Skip to main content

Advertisement

Log in

Effect of Ca/P ratio and milling material on the mechanochemical preparation of hydroxyapaptite

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The mechanochemical transformation of Ca(OH)2–(NH4)2HPO4 with different Ca/P ratios 1; 1.5; 1.67 and 1.75 was carried out for different periods of time from 10 min to 24 h in a horizontal vibration mill using steel and agate vials and balls. The phase transformations obtained at each milling stage were characterized by X-ray diffraction, infrared spectroscopy and transmission electron microscopy. Complete transformation to hydroxyapatite took place during the first 5 h of milling, for Ca/P ratios 1.5 to 1.7, when milling was carried out with steel vials and balls. The contamination was not significant for the periods of milling studied for both milling media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sergo V, Sbaizero O, Clarke DR. Mechanical and chemical consequences of the residual stresses in plasma sprayed hydroxyapatite coatings. Biomaterials. 1997;18:477.

    Article  CAS  PubMed  Google Scholar 

  2. Silva CC, Pinheiro AG, Miranda MAR, Góes JC, Sombra ASB. Structural properties of hydroxyapatite obtained by mechanosynthesis. Solid State Sci. 2003;5:553.

    Article  CAS  ADS  Google Scholar 

  3. Fernandez E, Gil F, Ginebra M, Driessens F, Planell J. Calcium phosphate bone cements for clinical applications. J Mater Sci: Mater Med. 1999;10:177.

    Article  CAS  Google Scholar 

  4. Fanovich J, Porto J. Influence of temperature and additives on the microstructure and sintering behaviour of hydroxyapatites with different Ca/P ratios. J Mater Med. 1998;9:53.

    Article  CAS  Google Scholar 

  5. Suchananek W, Yoshimura M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J Mater Res. 1998;13:94.

    Article  ADS  Google Scholar 

  6. Yamashita K, Kanazawa T. Inorganic phosphate materials. Amsterdam, The Netherlands: Kodansha & Elsevier; 1989. p. 15.

    Google Scholar 

  7. Legeros RZ. Calcium phosphates in oral biology and medicine. Basel, Switzerland: Kager AG; 1991. p. 201.

    Google Scholar 

  8. Yoshimura M, Suda H. Hydroxyapatite and related compounds. Boca Raton, FL: CRC Press; 1994. p. 45.

    Google Scholar 

  9. Elliot JC. Structure and chemistry of the apatites and other calcium orthophosphates. Amsterdam, The Netherlands: Elsevier; 1994.

    Google Scholar 

  10. Suchanek W, Suda H, Yashima M, Kakihana M, Yoshimura M. Biocompatible whiskers with controlled morphology and stoichiometry. J Mater Res. 1995;10:521.

    Article  CAS  ADS  Google Scholar 

  11. Liou S-C, Chen S-Y. Transformation mechanism of different chemically precipitated apatitic precursors into β-tricalcium phosphate upon calcinations. Biomaterials. 2002;23:4541.

    Article  CAS  PubMed  Google Scholar 

  12. Kim W, Zhang Q, Saito F. Mechanochemical synthesis of hydroxyapatite from Ca(OH)2–P2O5 and CaO–Ca(OH)2–P2O5 mixtures. J Mater Sci. 2000;35:5401.

    Article  CAS  Google Scholar 

  13. Spadavecchia U, González G. Obtención de hidroxiapatita manométrica para aplicaciones médicas. Rev Fac Ing. 2007;22(4):37.

    CAS  Google Scholar 

  14. Kim W, Saito F. Mechanochemical síntesis of hydroxyapatite from constituent powder mixtures by dry grinding. J Chem Eng Jpn. 2000;35:768.

    Article  Google Scholar 

  15. Yeong B, Junmin X, Wang J. Mechanochemical síntesis of hydroxyapatite from calcium oxide and brushite. J Am Ceram Soc. 2001;84:465.

    Article  CAS  Google Scholar 

  16. Mochales C, El Briak-BenAbdeslam H, Ginebra MP, Terol A, Planell JA, Boudeville P. Dry mechanochemical synthesis of hydroxyapatites from DCPD and CaO: influence of instrumental parameters on the reaction kinetics. Biomaterials. 2004;25:1151.

    Article  CAS  PubMed  Google Scholar 

  17. Gonzalez G, Villalba R, Sargarzazu A. Synthesis of biomaterials by mechanochemical transformation. Mater Sci Forum. 2002;386–388:645.

    Article  Google Scholar 

  18. González G, Sagarzazu A, Villalba R. Mechanochemical transformation of mixtures of Ca(OH)2 and (NH4)2 HPO4 or P2O5. Mater Res Bull. 2006;41(10):1902.

    Article  CAS  Google Scholar 

  19. Gutman E. Mechanochemistry of materials. Cambridge, UK: Cambridge International Science; 1997.

    Google Scholar 

  20. Koutsopoulos S. Synthesis and characterization of hydroxyapatite crystal: a review study on the analytical methods. J Biomed Mater Res. 2002;62:600.

    Article  CAS  PubMed  Google Scholar 

  21. Cahil A, Soptrajanov B, Najdoski M, Lutz HD, Engelen B, Stefov V. Infrared and Raman spectra of magnesium ammonium phosphate hexahydrate (struvite) and its isomorphous analogues. Part VI: FT-IR spectra of isomorphously isolated species. NH4 + ions isolated in MKPO4·6H2O (M = Mg; Ni) and PO4 –3 ions isolated in MgNH4AsO4·6H2O. J Mol Struct. 2008;876:255.

    Article  CAS  ADS  Google Scholar 

  22. LeGeros RZ. Biologically relevant calcium phosphates. In: Myers HM, editor. Calcium phosphates in oral biology and medicine. London: Basel; San Francisco: Karger; 1991. p. 4–45.

  23. Farmer VC. The vibrations of protons in minerals: hydroxyl, water and ammonium. In: Farmer VC, editor. The Infrared spectra of minerals. London: Mineralogical Society; 1974. p. 137–182.

    Google Scholar 

  24. Ishikawas K, Ducheyne P, Radin S. Determination of the ratio in calcium-deficient hydroxyapatite using X-ray diffraction analysis. J Mater Sci: Mater Med. 1993;4:165.

    Article  Google Scholar 

  25. Mostafa NY. Characterization, thermal stability and sintering of hydroxyapatite powders prepared by different routes. Mater Chem Phys. 2005;94:333.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the FONACIT projects No. LAB-1998003690 and G-2001000900 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zully Benzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salas, J., Benzo, Z., Gonzalez, G. et al. Effect of Ca/P ratio and milling material on the mechanochemical preparation of hydroxyapaptite. J Mater Sci: Mater Med 20, 2249–2257 (2009). https://doi.org/10.1007/s10856-009-3804-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3804-3

Keywords

Navigation