Skip to main content
Log in

Immobilization of lactobionic acid on the surface of cadmium sulfide nanoparticles and their interaction with hepatocytes

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In the current study, β-galactose-carrying lactobionic acid (LA) was conjugated on the surface of mercaptoacetic acid-coated cadmium sulfide nanoparticles (CSNPs) to ensure specific recognition of liver cells (hepatocytes) and to enhance biocompatibility. Maltotrionic acid-coated CSNPs (MCSNPs) were also prepared for use as a control. The results showed that LA-immobilized CSNPs (LCSNPs) were selectively and rapidly internalized into hepatocytes and emitted more intense fluorescence images as well as demonstrated increased biocompatible behavior in vitro than those of CSNPs and MCSNPs. Furthermore, the uptake amount of LCSNPs into hepatocytes was higher than that of CSNPs and MCSNPs. All these results indicate that LCSNPs may find ever-growing applications in biological labels and detection or contrast agents in life science and medical diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Alivisatos AP. Semiconductor clusters, nanocrystals, and quantum dots. Science. 1996;27:933–7.

    Article  ADS  Google Scholar 

  2. Mitchell P. Turning the spotlight on cellular imaging. Nat Biotechnol. 2001;19:1013–7.

    Article  PubMed  CAS  Google Scholar 

  3. Chan WCW, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S. Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol. 2002;13:40–6.

    Article  PubMed  CAS  Google Scholar 

  4. Gao X, Yang L, Petros JA, Marshall FF, Simons JW, Nie S. In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol. 2005;16:63–72.

    Article  PubMed  CAS  Google Scholar 

  5. Hsieh SC, Wang FF, Lin CS, Chen YJ, Hung SC, Wang YJ. The inhibition of osteogenesis with human bone marrow mesenchymal stem cells by CdSe/ZnS quantum dot labels. Biomaterials. 2006;27:1656–64.

    Article  PubMed  CAS  Google Scholar 

  6. Yu WW, Chang E, Drezek R, Colvin VL. Watersoluble quantum dots for biomedical applications. Biochem Biophy Res Communi. 2006;348:781–6.

    Article  CAS  Google Scholar 

  7. Celik A, Comelekoglu U, Yalin S. A study on the investigation of cadmium chloride genotoxicity in rat bone marrow using micronucleus test and chromosome aberration analysis. Toxicol Indl Health. 2005;21:243–8.

    Article  CAS  Google Scholar 

  8. Seydel C. Quantum dots get wet. Science. 2003;300:80–1.

    Article  PubMed  CAS  Google Scholar 

  9. Gomez N, Winter JO, Shieh F, Saunders AE, Korgel BA, Schmidt CE. Challenges in quantum dot-neuron active interfacing. Talanta. 2005;67:462–71.

    Article  PubMed  CAS  Google Scholar 

  10. Ballou B, Lagerholm BC, Ernst LA, Bruchez MP, Waggoner AS. Noninvasive imaging of quantum dots in mice. Bioconjug Chem. 2004;15:79–86.

    Article  PubMed  CAS  Google Scholar 

  11. Chan WCW, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science. 1998;281:2016.

    Article  PubMed  ADS  CAS  Google Scholar 

  12. Chen HM, Huang XF, Xu L, Xu J, Chen KJ, Feng D. Self-assembly and photoluminescence of CdS-mercaptoacetic clusters with internal structures. Superlatt Microstruc. 2000;27:1–5.

    Article  ADS  CAS  Google Scholar 

  13. Mitchell GP, Mirkin CA, Letsinger RL. Programmed assembly of DNA functionalized quantum dots. J Am Chem Soc. 1999;121:8122–23.

    Article  CAS  Google Scholar 

  14. Chen CC, Yet CP, Wang HN, Chao CY. Self-assembly of monolayers of cadmium selenide nanocrystals with dual color emission. Langmuir. 1999;15:6845–50.

    Article  CAS  Google Scholar 

  15. Chen F, Gerion D. Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells. Nano Lett. 2004;41:1827–32.

    Article  ADS  Google Scholar 

  16. Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM. Biological applications of quantum dots. Biomaterials. 2007;28:4717–32.

    Article  PubMed  CAS  Google Scholar 

  17. Maysinger D, Lovric J, Eisenberg A, Savic R. Fate of micelles and quantum dots in cells. Euro J Pharm Biopharm. 2007;65:270–81.

    Article  CAS  Google Scholar 

  18. Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science. 1998;281:2013–6.

    Article  PubMed  ADS  CAS  Google Scholar 

  19. Rosenthal SJ, Tomlinson I, Adkins EM, Schroeter S, Adams S, Swafford L, et al. Targeting cell surface receptors with ligand-conjugated nanocrystals. J Am Chem Soc. 2002;124:4586–94.

    Article  PubMed  CAS  Google Scholar 

  20. Pinaud F, King D, Moore HP, Weiss S. Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J Am Chem Soc. 2004;126:6115–23.

    Article  PubMed  CAS  Google Scholar 

  21. Jaiswal JK, Mattoussi H, Mauro JM, Simon SM. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol. 2003;21:47–51.

    Article  PubMed  CAS  Google Scholar 

  22. Hanaki KI, Momo A, Oku T, Komoto A, Maenosono S, Yamaguchi Y, et al. Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker. Biochem Biophys Res Commun. 2003;302:496–501.

    Article  PubMed  CAS  Google Scholar 

  23. Goldman ER, Anderson GP, Tran PT, Mattoussi H, Charles PT, Mauro JM. Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays. Anal Chem. 2002;74:841–7.

    Article  PubMed  CAS  Google Scholar 

  24. Gerion D, Parak WJ, Williams SC, Zanchet D, Micheel CM, Alivisatos AP. Sorting fluorescent nanocrystals with DNA. J Am Chem Soc. 2002;124:7070–4.

    Article  PubMed  CAS  Google Scholar 

  25. Chung TW, Yang J, Akaike T, Cho KY, Nah JW, Kim SI, et al. Preparation of alginate/galactosylated chitosan scaffold for hepatocyte attachment. Biomaterials. 2002;23:2827–34.

    Article  PubMed  CAS  Google Scholar 

  26. Kamruzzaman Selim KM, Ha YS, Kim SJ, Chang Y, Kim TJ, Ho LG, et al. Surface modification of magnetite nanoparticles using lactobionic acid and their interaction with hepatocytes. Biomaterials. 2007;28:710–6.

    Article  PubMed  CAS  Google Scholar 

  27. Kang IK, Moon JS, Jeon HM, Meng W, Kim YI, Hwang YJ, et al. Morphology and metabolism of Ba-alginate encapsulated hepatocytes with galactosylated poly(allyl amine) and poly(vinyl alcohol) as extracellular matrices. J Mater Sci: Mater Med. 2005;16:533–9.

    Article  CAS  Google Scholar 

  28. Bae JS, Seo EJ, Kang IK. Synthesis and characterization of heparinized polyurethanes using plasma glow discharge. Biomaterials. 1999;20:529–37.

    Article  PubMed  CAS  Google Scholar 

  29. Selim KMK, Lee JH, Kim SJ, Xing Z, Kang IK, Chang Y, et al. Surface modification of magnetites using maltotrionic acid and folic acid for molecular imaging. Macromol Res. 2006;14:646–53.

    CAS  Google Scholar 

  30. Chow KS, Khor E, Wan ACA. Porous chitin matrices for tissue engineering: fabrication and in vitro cytotoxic assessment. J Polym Res. 2001;8:27–35.

    Article  CAS  Google Scholar 

  31. Smith NV. X-ray powder data files American Society for Testing and Materials, Philadelphia; 1967.

  32. Pan AL, Ma JG, Yan XZ, Zou BS. The formation of CdS nanocrystals in silica gels by gamma-irradiation and their optical properties. J Phys Condens Matter. 2004;16:3229–38.

    Article  CAS  Google Scholar 

  33. Brus LE. Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J Chem Phys. 1984;80:4403–9.

    Article  ADS  CAS  Google Scholar 

  34. Kuo YC, Wang Q, Ruengruglikit C, Yu H, Huang Q. Antibody-conjugated CdTe quantum dots for Escherichia coli detection. J Phys Chem C. 2008;112:4818–24.

    Article  CAS  Google Scholar 

  35. Wu YL, Lim CS, Fu S, Tok AIY, Lau HM, Boey FYC, et al. Surface modifications of ZnO qd for bio-imaging. Nanotechnology. 2007;18:1.

    Google Scholar 

  36. Derfus AM, Chan WCW, Bhatia SA. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2004;4:11–8.

    Article  ADS  CAS  Google Scholar 

  37. Parak WJ, Pellegrino T, Plank C. Labeling of cells with quantum dot. Nanotechnology. 2005;16:9–25.

    Article  ADS  Google Scholar 

  38. Spanhel L, Haase M, Weller H, Henglein A. Photochemistry of colloidal semiconductors. 20. Surface modification and stability of strong luminescing CdS particles. J Am Chem Soc. 1987;109:5649–55.

    Article  CAS  Google Scholar 

  39. Bae PK, Kim KN, Lee SJ, Chang HJ, Lee CK, Park JK. The modification of quantum dot probes used for the targeted imaging of his-tagged fusion proteins. Biomaterials. 2009;30:836–42.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by a grant from the Advanced Medical Technology Cluster for Diagnosis and Prediction at KNU from MOCIE, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inn-Kyu Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamruzzaman Selim, K.M., Xing, ZC., Guo, H. et al. Immobilization of lactobionic acid on the surface of cadmium sulfide nanoparticles and their interaction with hepatocytes. J Mater Sci: Mater Med 20, 1945–1953 (2009). https://doi.org/10.1007/s10856-009-3741-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3741-1

Keywords

Navigation