Skip to main content
Log in

Development of in situ-forming hydrogels for hemorrhage control

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

We report the preparation of in situ-forming hydrogels, composed of oxidized dextran (Odex) and amine-containing polymers, for their potential use as a wound dressing to promote blood clotting. Dextran was oxidized by sodium periodate to introduce aldehyde groups to form hydrogels, upon mixing in solution with different polymers containing primary amine groups, including polyallylamine (PAA), oligochitosan and glycol chitosan. A series of experiments were conducted to identify the optimum gelation condition for the Odex-PAA system. The polymer concentration appeared to have a major effect on gelation time and the polymer weight ratio affected the resulting gel content and swelling. Other influencing factors included pH of the buffer used to dissolve each polymer, PAA molecular weight, and the type of individual material. The latter also contributed significantly to gel content and swelling. Thromboelastography was used to examine the effects of the in situ gelation on blood coagulation in vitro, where the Odex-PAA combination was found to be most pro-hemostatic, as indicated by a decrease in clotting time and an increase in clot strength. The results of this study demonstrated that in situ-forming hydrogels could promote clotting in vitro; however, further studies are required to determine if the same hydrogel formulations are effective in controlling hemorrhage in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kelly JF, Ritenour AE, McLaughlin DF, Bagg KA, Apodaca AN, Mallak CT, et al. Injury severity and causes of death from operation Iraqi freedom and operation enduring freedom: 2003–2004 versus 2006. J Trauma. 2008;64(Suppl):S21–7.

    Article  PubMed  Google Scholar 

  2. Pusateri AE, Holcomb JB, Kheirabadi BS, Alam HB, Wade CE, Ryan KL. Making sense of the preclinical literature on advanced hemostatic products. J Trauma. 2006;60:674–82.

    Article  PubMed  Google Scholar 

  3. Gutowska A, Jeong B, Jasionowski M. Injectable gels for tissue engineering. Anat Rec. 2001;263:342–9.

    Article  PubMed  CAS  Google Scholar 

  4. Kretlow JD, Klouda L, Mikos AG. Injectable matrices and scaffolds for drug delivery in tissue engineering. Adv Drug Deliv Rev. 2007;59:263–73.

    Article  PubMed  CAS  Google Scholar 

  5. Silver F, Wang M-C PG. Preparation and use of fibrin glue in surgery. Biomaterials. 1995;16:891–903.

    Article  PubMed  CAS  Google Scholar 

  6. Bennett S, Melanson D, Torchiana D, Wiseman D, Sawhney A. Next-generation hydrogel films as tissue sealants and adhesion barriers. J Card Surg. 2003;18:494–9.

    Article  PubMed  Google Scholar 

  7. Nguyen K, West J. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials. 2002;23:4307–14.

    Article  PubMed  CAS  Google Scholar 

  8. Hiemstra C, van der Aa LJ, Zhong Z, Dijkstra PJ, Feijen J. Novel in situ forming, degradable dextran hydrogels by Michael addition chemistry: synthesis, rheology, and degradation. Macromolecules. 2007;40:1165–73.

    Article  ADS  CAS  Google Scholar 

  9. Murakami Y, Yokoyama M, Okano T, Nishida H, Tomizawa Y, Endo M, et al. A novel synthetic tissue-adhesive hydrogel using a crosslinkable polymeric micelle. J Biomed Mater Res A. 2007;80:421–7.

    PubMed  Google Scholar 

  10. Lee B, Dalsin J, Messersmith P. Synthesis and gelation of DOPA-modified poly(ethylene glycol) hydrogels. Biomacromolecules. 2002;3:1038–47.

    Article  PubMed  CAS  Google Scholar 

  11. Crompton KE, Prankerd RJ, Paganin DM, Scott TF, Horne MK, Finkelstein DI, et al. Morphology and gelation of thermosensitive chitosan hydrogels. Biophys Chem. 2005;117:47–53.

    Article  PubMed  CAS  Google Scholar 

  12. McConaughy SD, Stroud PA, Boudreaux B, Hester RD, McCormick CL. Structural characterization and solution properties of a galacturonate polysaccharide derived from Aloe vera capable of in situ gelation. Biomacromolecules. 2008;9:472–80.

    Article  PubMed  CAS  Google Scholar 

  13. Yamaguchi N, Kiick KL. Polysaccharide-poly(ethylene glycol) star copolymer as a scaffold for the production of bioactive hydrogels. Biomacromolecules. 2005;6:1921–30.

    Article  PubMed  CAS  Google Scholar 

  14. Jin R, Hiemstra C, Zhong Z, Feijen J. Enzyme-mediated fast in situ formation of hydrogels from dextran-tyramine conjugates. Biomaterials. 2007;28:2791–800.

    Article  PubMed  CAS  Google Scholar 

  15. Ehrbar M, Rizzi SC, Schoenmakers RG, Miguel BS, Hubbell JA, Weber FE, et al. Biomolecular hydrogels formed and degraded via site-specific enzymatic reactions. Biomacromolecules. 2007;8:3000–7.

    Article  PubMed  CAS  Google Scholar 

  16. West J, Hubbell J. Comparison of covalently and physically cross-linked polyethylene glycol-based hydrogels for the prevention of postoperative adhesions in a rat model. Biomaterials. 1995;16:1153–6.

    Article  PubMed  CAS  Google Scholar 

  17. Van Tomme SR, van Steenbergen MJ, De Smedt SC, van Nostrum CF, Hennink WE. Self-gelling hydrogels based on oppositely charged dextran microspheres. Biomaterials. 2005;26:2129–35.

    Article  PubMed  Google Scholar 

  18. Peng HT, Blostein MD, Shek PN. Experimental optimization of an in situ-forming hydrogel for hemorrhage control. J Biomed Mater Res B Appl Biomater. 2009;89:199–209.

    PubMed  Google Scholar 

  19. Van Tomme SR, Hennink WE. Biodegradable dextran hydrogels for protein delivery applications. Expert Rev Med Devices. 2007;4:147–64.

    Article  PubMed  Google Scholar 

  20. Maia J, Ferreira L, Carvalho R, Ramos MA, Gil MH. Synthesis and characterization of new injectable and degradable dextran-based hydrogels. Polym. 2005;46:9604–14.

    Article  CAS  Google Scholar 

  21. Ito T, Yeo Y, Highley CB, Bellas E, Kohane DS. Dextran-based in situ cross-linked injectable hydrogels to prevent peritoneal adhesions. Biomaterials. 2007;28:975–83.

    Article  PubMed  CAS  Google Scholar 

  22. Chertow GM, Burke SK, Lazarus JM, Stenzel KH, Wombolt D, Goldberg D, et al. Poly[allylamine hydrochloride] (RenaGel): a noncalcemic phosphate binder for the treatment of hyperphosphatemia in chronic renal failure. Am J Kidney Dis. 1997;29:66–71.

    Article  PubMed  CAS  Google Scholar 

  23. Park H, Park K, Kim D. Preparation and swelling behavior of chitosan-based superporous hydrogels for gastric retention application. J Biomed Mater Res A. 2006;76:144–50.

    PubMed  Google Scholar 

  24. Lee DW, Baney RH. Oligochitosan derivatives bearing electron-deficient aromatic rings for adsorption of amitriptyline: implications for drug detoxification. Biomacromolecules. 2004;5:1310–5.

    Article  PubMed  CAS  Google Scholar 

  25. Weng L, Romanov A, Rooney J, Chen W. Non-cytotoxic, in situ gelable hydrogels composed of N-carboxyethyl chitosan and oxidized dextran. Biomaterials. 2008;29:3905–13.

    Article  PubMed  CAS  Google Scholar 

  26. Mo X, Iwata H, Matsuda S, Ikada Y. Soft tissue adhesive composed of modified gelatin and polysaccharides. J Biomater Sci Polym Ed. 2000;11:341–51.

    Article  PubMed  CAS  Google Scholar 

  27. Nakajima N, Sugai H, Tsutsumi S, Hyon S-H. Self-degradable bioadhesive. Key Eng Mater. 2007;342–343:713–6.

    Article  Google Scholar 

  28. Bhatia SK, Arthur SD, Chenault HK, Figuly GD, Kodokian GK. Polysaccharide-based tissue adhesives for sealing corneal incisions. Curr Eye Res. 2007;32:1045–50.

    Article  PubMed  CAS  Google Scholar 

  29. Salooja N, Perry DJ. Thrombelastography. Blood Coagul Fibrinolysis. 2001;12:327–37.

    Article  PubMed  CAS  Google Scholar 

  30. Zhao H, Heindel ND. Determination of degree of substitution of formyl groups in polyaldehyde dextran by the hydroxylamine hydrochloride method. Pharm Res. 1991;8:400–2.

    Article  PubMed  CAS  Google Scholar 

  31. Vig S, Chitolie A, Bevan DH, Halliday A, Dormandy J. Thromboelastography: a reliable test? Blood Coagul Fibrinolysis. 2001;12:555–61.

    Article  PubMed  CAS  Google Scholar 

  32. Zambruni A, Thalheimer U, Leandro G, Perry D, Burroughs AK. Thromboelastography with citrated blood: comparability with native blood, stability of citrate storage and effect of repeated sampling. Blood Coagul Fibrinolysis. 2004;15:103–7.

    Article  PubMed  CAS  Google Scholar 

  33. Camenzind V, Bombeli T, Seifert B, Jamnicki M, Popovic D. Citrate storage affects thrombelastography analysis. Anesthesiology. 2000;92:1242–9.

    Article  PubMed  CAS  Google Scholar 

  34. Miksa D, Irish ER, Chen D, Composto RJ, Eckmann DM. Dextran functionalized surfaces via reductive amination: morphology, wetting, and adhesion. Biomacromolecules. 2006;7:557–64.

    Article  PubMed  CAS  Google Scholar 

  35. Balakrishnana B, Jayakrishnan A. Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds. Biomaterials. 2005;26:3941–51.

    Article  Google Scholar 

  36. Dohno C, Okamoto A, Saito I. Stable, specific, and reversible base pairing via Schiff base. J Am Chem Soc. 2005;127:16681–4.

    Article  PubMed  CAS  Google Scholar 

  37. Peng T, Yao KD, Yuan C, Goosen MFA. Structural changes of pH-sensitive chitosan/polyether hydrogels in different pH solution. J Polym Sci A Polym Chem. 1994;32:591–6.

    Article  CAS  Google Scholar 

  38. Carlin G, Wik K, Arfors K-E, Saldeen T, Tangen O. Influences on the formation and structure of fibrin. Thromb Res. 1976;9:623–63.

    Article  PubMed  CAS  Google Scholar 

  39. Okude M, Yamanaka A, Akihama S. The effects of pH on the generation of turbidity and elasticity associated with fibrinogen-fibrin conversion by thrombin are remarkably influenced by sialic acid in fibrinogen. Biol Pharm Bull. 1995;18:203–7.

    PubMed  CAS  Google Scholar 

  40. Alam H, Uy G, Miller D, Koustova E, Hancock T, Inocencio R, et al. Comparative analysis of hemostatic agents in a swine model of lethal groin injury. J Trauma. 2003;54:1077–82.

    Article  PubMed  Google Scholar 

  41. Dinerman A, Cappello J, Ghandehari H, Hoag S. Swelling behaviour of a genetically engineered silk-elastinlike protein polymer hydrogel. Biomaterials. 2002;23:4203–10.

    Article  PubMed  CAS  Google Scholar 

  42. Weng L, Pan H, Chen W. Self-crosslinkable hydrogels composed of partially oxidized hyaluronan and gelatin: In vitro and in vivo responses. J Biomed Mater Res A. 2008;85:352–65.

    PubMed  Google Scholar 

  43. Okamotoa Y, Yanoa R, Miyatakea K, Tomohirob I, Shigemasac Y, Minami S. Effects of chitin and chitosan on blood coagulation. Carbohydr Polym. 2003;53:337–42.

    Article  Google Scholar 

  44. Rao SB, Sharma CP. Use of chitosan as a biomaterial: Studies on its safety and hemostatic potential. J Biomed Mater Res. 1997;34:21–8.

    Article  PubMed  CAS  Google Scholar 

  45. Bergera J, Reista M, Mayera JM, Feltb O, Peppasc NA, Gurny R. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm. 2004;57:19–34.

    Article  Google Scholar 

  46. Ono K, Saito Y, Yura H, Ishikawa K, Kurita A, Akaike T, et al. Photocrosslinkable chitosan as a biological adhesive. J Biomed Mater Res. 2000;49:289–95.

    Article  PubMed  CAS  Google Scholar 

  47. Kurita K. Controlled functionalization of the polysaccharide chitin. Prog Polym Sci. 2001;26:1921–71.

    Article  CAS  Google Scholar 

  48. Lin C-W, Lin J-C. Characterization and blood coagulation evaluation of the water-soluble chitooligosaccharides prepared by a facile fractionation method. Biomacromolecules. 2004;6:1691–7.

    Google Scholar 

  49. Sashiwa H, Aiba SI. Chemically modified chitin and chitosan as biomaterials. Prog Polym Sci. 2004;29:887–908.

    Article  CAS  Google Scholar 

  50. Shimojoh M, Fukushima K, Kurita K. Low-molecular-weight chitosans derived from β-chitin: preparation, molecular characteristics and aggregation activity. Carbohydr Polym. 1998;35:223–31.

    Article  CAS  Google Scholar 

  51. Shin M-S, Kim SJ, Park SJ, Lee YH, Kim SI. Synthesis and characteristics of the interpenetrating polymer network hydrogel composed of chitosan and polyallylamine. J Appl Polym Sci. 2002;86:498–503.

    Article  CAS  Google Scholar 

  52. Mühlebach A, Müller B, Pharisa C, Hofmann M, Seiferling B, Guerry D. New water-soluble photo crosslinkable polymers based on modified poly(vinyl alcohol). J Polym Sci A Polym Chem. 1997;35:3603–11.

    Article  Google Scholar 

  53. Courtney J, Lamba N, Sundaram S, Forbes C. Biomaterials for blood-contacting applications. Biomaterials. 1994;15:737–44.

    Article  PubMed  CAS  Google Scholar 

  54. Glidden P, Malaska C, Herring S. Thromboelastograph assay for measuring the mechanical strength of fibrin sealant clots. Clin Appl Thromb Hemost. 2000;6:226–33.

    Article  PubMed  CAS  Google Scholar 

  55. Mortier E, Ongenae M, De Baerdemaeker L, Herregods L, Den Blauwen N, Van Aken J, et al. In vitro evaluation of the effect of profound haemodilution with hydroxyethyl starch 6%, modified fluid gelatin 4% and dextran 40 10% on coagulation profile measured by thromboelastography. Anaesthesia. 1997;52:1061–4.

    Article  PubMed  CAS  Google Scholar 

  56. Fenton JII, Fasco M. Polyethylene glycol 6,000 enhancement of the clotting of fibrinogen solutions in visual and mechanical assays. Thromb Res. 1974;4:809–17.

    Article  PubMed  CAS  Google Scholar 

  57. Gennisson J-L, Lerouge S, Cloutier G. Assessment by transient elastography of the viscoelastic properties of blood during clotting. Ultrasound Med Biol. 2006;32:1529–37.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Mr. Clark Chen, Mr. Anup Tuladhar and Ms. Heather Wright for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry T. Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, H.T., Shek, P.N. Development of in situ-forming hydrogels for hemorrhage control. J Mater Sci: Mater Med 20, 1753–1762 (2009). https://doi.org/10.1007/s10856-009-3721-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3721-5

Keywords

Navigation