Skip to main content
Log in

Preparation and characterization of an injectable composite

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Hydrogels are increasingly used in medicine due to their potential to be delivered into the body in a minimally invasive manner and to be gelated at the site of introduction subsequently. The aim of this study was to develop a novel injectable and in situ-forming gel composite (GC) comprised of calcium alginate hydrogel and nano-hydroxyapatite/collagen (nHAC), assess its rheological, mechanical and in vitro degradable properties, and discuss the gelation mechanism. Injectable property test showed that the injectability of GC was tunable. Rheological results indicated that three phases of pre-gel, sol–gel phase transformation and post-gel could be found in the process of gelation. The compressive elastic modulus (E) and shear modulus (G) are in the range of 17.0–56.0 kPa and 24.7–55.0 kPa, respectively. During the in vitro degradation, the wet weight increased in the first week, then declined in the following 3 weeks, but the dry weight lost continuously during whole study. Meanwhile, the surface changed greatly after 2 weeks, but samples did not break down up to 28 days. These data indicate that GC exhibits controllable initial setting time and final setting time, tunable injectability, which provides a possible injectable material for bone repair and bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W. Bensaid, J.T. Triffitt, C. Blanchat, K. Oudina, L. Sedel, H. Petite, Biomaterials 24, 2497 (2003). doi:10.1016/S0142-9612(02)00618-X

    Article  PubMed  CAS  Google Scholar 

  2. B. Balakrishnan, A. Jayakrishnan, Biomaterials 26, 3941 (2005). doi:10.1016/j.biomaterials.2004.10.005

    Article  PubMed  CAS  Google Scholar 

  3. K.Y. Lee, D.J. Mooney, Chem. Rev 101, 1869 (2001). doi:10.1021/cr000108x

    Article  PubMed  CAS  Google Scholar 

  4. S.K. Mallapragada, B. Narasimhan, Biomaterials 23, 4305 (2002). doi:10.1016/S0142-9612(02)00172-2

    Article  CAS  Google Scholar 

  5. B. Jeong, Y.H. Bae, D.S. Lee, S.W. Kim, Nature 388, 860 (1997). doi:10.1038/42218

    Article  PubMed  ADS  CAS  Google Scholar 

  6. B.Ф. Palsson, S.N. Bhatia, Tissue Engineering (Person Prentice Hall, USA, 2004), pp. 261–262. Person Eduction,Inc

    Google Scholar 

  7. M.D. Timmer, C.G. Ambrose, A.G. Mikos, Biomaterials 24, 571 (2003). doi:10.1016/S0142-9612(02)00368-X

    Article  PubMed  CAS  Google Scholar 

  8. R.G. Payne, M.J. Yaszemski, A.W. Yasko, A.G. Mikos, Biomaterials 23, 4359 (2002). doi:10.1016/S0142-9612(02)00184-9

    Article  PubMed  CAS  Google Scholar 

  9. J.P. Fisher, T.A. Holland, D. Dean, P.S. Engel, A.G. Mikos, J. Biomater. Sci. Polym. Ed 12, 673 (2001). doi:10.1163/156856201316883476

    Article  PubMed  CAS  Google Scholar 

  10. J.P. Fisher, D. Dean, A.G. Mikos, Biomaterials 23, 4333 (2002). doi:10.1016/S0142-9612(02)00178-3

    Article  PubMed  CAS  Google Scholar 

  11. A. Chenite, C. Chaput, D. Wang, C. Combes, M.D. Buschmann, C.D. Hoemann, J.C. Leroux, B.L. Atkinson, F. Binette, A. Selmani, Biomaterials 21, 2155 (2000). doi:10.1016/S0142-9612(00)00116-2

    Article  PubMed  CAS  Google Scholar 

  12. T. Boontheekul, H.J. Kong, D.J. Mooney, Biomaterials 26, 2455 (2005). doi:10.1016/j.biomaterials.2004.06.044

    Article  PubMed  CAS  Google Scholar 

  13. E. Westhaus, P.B. Messersmith, Biomaterials 22, 453 (2001). doi:10.1016/S0142-9612(00)00200-3

    Article  PubMed  CAS  Google Scholar 

  14. K.E. Crompton, J.D. Goud, R.V. Bellamkonda, T.R. Gengenbach, D.I. Finkelstein, M.K. Horne, J.S. Forsythe, Biomaterials 28, 441 (2007). doi:10.1016/j.biomaterials.2006.08.044

    Article  PubMed  CAS  Google Scholar 

  15. J.H. Cho, S.H. Kim, K.D. Park, M.C. Jung, W.I. Yang, S.W. Han, J.Y. Noh, J.W. Lee, Biomaterials 25, 5743 (2004). doi:10.1016/j.biomaterials.2004.01.051

    Article  PubMed  CAS  Google Scholar 

  16. K. Nam, T. Kimura, A. Kishida, Biomaterials 28, 1 (2007). doi:10.1016/j.biomaterials.2006.08.002

    Article  PubMed  CAS  Google Scholar 

  17. S. Seiffert, W. Oppermann, K. Saalwaechter, Polymer 48, 5599 (2007). doi:10.1016/j.polymer.2007.07.013

    Article  CAS  Google Scholar 

  18. G. Pitarresi, M.A. Casadei, D. Mandracchia, P. Paolicelli, F.S. Palumbo, G. Giammona, J. Control Release 119, 328 (2007). doi:10.1016/j.jconrel.2007.03.005

    Article  PubMed  CAS  Google Scholar 

  19. G. Pitarresi, F.S. Palumbo, G. Giammona, M.A. Casadei, F.M. Moracci, Biomaterials 24, 4301 (2003). doi:10.1016/S0142-9612(03)00332-6

    Article  PubMed  CAS  Google Scholar 

  20. V. Crescenzi, A. Francescangeli, A. Taglienti, Biomacromolecules 3, 1384 (2002). doi:10.1021/bm025657m

    Article  PubMed  CAS  Google Scholar 

  21. T.H. Chen, H.D. Embree, E.M. Brown, M.M. Taylor, G.F. Payne, Biomaterials 24, 2831 (2003). doi:10.1016/S0142-9612(03)00096-6

    Article  PubMed  CAS  Google Scholar 

  22. G.D. Nicodemus, S.J. Bryant, Tissue Eng. Pt. B-Rev 14, 149 (2008). doi:10.1089/ten.teb.2007.0332

    Article  CAS  Google Scholar 

  23. X.Z. Shu, S. Ahmad, Y.C. Liu, G.D. Prestwich, J. Biomed. Mater. Res. A 79A, 902 (2006). doi:10.1002/jbm.a.30831

    Article  CAS  Google Scholar 

  24. S.S. Cai, Y.C. Liu, X.Z. Shu, G.D. Prestwich, Biomaterials 26, 6054 (2005). doi:10.1016/j.biomaterials.2005.03.012

    Article  PubMed  CAS  Google Scholar 

  25. H.H. Tonnesen, J. Karlsen, Drug Dev. Ind. Pharm 28, 621 (2002). doi:10.1081/DDC-120003853

    Article  PubMed  CAS  Google Scholar 

  26. C.Y. Yu, X.C. Zhang, F.Z. Zhou, X.Z. Zhang, S.X. Cheng, R.X. Zhuo, Int. J. Pharm 357, 15 (2008). doi:10.1016/j.ijpharm.2008.01.030

    Article  PubMed  CAS  Google Scholar 

  27. A. Kikuchi, T. Okano, Adv. Drug Deliv. Rev 54, 53 (2002). doi:10.1016/S0169-409X(01)00243-5

    Article  PubMed  CAS  Google Scholar 

  28. B.L. Strand, Y.A. Morch, G. Skjak-Braek, Minerva Biotechnol 12, 223 (2000)

    Google Scholar 

  29. L. Wang, R.M. Shelton, P.R. Cooper, M. Lawson, J.T. Triffitt, J.E. Barralet, Biomaterials 24, 3475 (2003). doi:10.1016/S0142-9612(03)00167-4

    Article  PubMed  CAS  Google Scholar 

  30. H.J. Kong, K.Y. Lee, D.J. Mooney, Polymer 43, 6239 (2002). doi:10.1016/S0032-3861(02)00559-1

    Article  CAS  Google Scholar 

  31. C. Du, F.Z. Cui, W. Zhang, Q.L. Feng, X.D. Zhu, K. de Groot, J. Biomed. Mater. Res 50, 518 (2000). doi:10.1002/(SICI)1097-4636(20000615)50:4<518::AID-JBM7>3.0.CO;2-W

    Article  PubMed  CAS  Google Scholar 

  32. R.Z. Wang, F.Z. Cui, H.B. Lu, H.B. Wen, C.L. Ma, H.D. Li, J. Mater. Sci. Lett 14, 490 (1995). doi:10.1007/BF00665911

    Article  CAS  Google Scholar 

  33. S.S. Liao, F.Z. Cui, W. Zhang, Q.L. Feng, J. Biomed. Mater. Res. B 69B, 158 (2004). doi:10.1002/jbm.b.20035

    Article  CAS  Google Scholar 

  34. S.S. Liao, F.Z. Cui, Y. Zhu, J. Bioact. Compat. Polym 19, 117 (2004). doi:10.1177/0883911504042643

    Article  CAS  Google Scholar 

  35. X.M. Li, Q.L. Feng, X.H. Liu, W. Dong, F.H. Cui, Biomaterials 27, 1917 (2006). doi:10.1016/j.biomaterials.2005.11.013

    Article  PubMed  CAS  Google Scholar 

  36. X.M. Li, Q.L. Feng, F.Z. Cui, Mater. Sci. Eng. C-Bio 716, 26 (2006)

    Google Scholar 

  37. X.M. Li, Q.L. Feng, Y.F. Jiao, F.H. Cui, Polym. Int 54, 1034 (2005). doi:10.1002/pi.1804

    Article  CAS  Google Scholar 

  38. K.T. Paige, L.G. Cima, M.J. Yaremchuk, J.P. Vacanti, C.A. Vacanti, Plast. Reconstr. Surg 96, 1390 (1995)

    Article  PubMed  CAS  Google Scholar 

  39. Q. Lv, Q.L. Feng, J. Mater. Sci.: Mater. Med 17, 1349 (2006). doi:10.1007/s10856-006-0610-z

    Article  CAS  Google Scholar 

  40. K.S. Anseth, C.N. Bowman, L. BrannonPeppas, Biomaterials 17, 1647 (1996). doi:10.1016/0142-9612(96)87644-7

    Article  PubMed  CAS  Google Scholar 

  41. X.M. Li, Q.L. Feng, Mater. Sci. Forum 475–479, 2387 (2005)

    Article  Google Scholar 

  42. R. Skouri, F. Schosseler, J.P. Munch, S.J. Candau, Macromolecules 28, 197 (1995). doi:10.1021/ma00105a026

    Article  ADS  CAS  Google Scholar 

  43. E.C. Muniz, G. Geuskens, Macromolecules 34, 4480 (2001). doi:10.1021/ma001192l

    Article  ADS  CAS  Google Scholar 

  44. J.S. Temenoff, A.G. Mikos, Biomaterials 21, 2405 (2000). doi:10.1016/S0142-9612(00)00108-3

    Article  PubMed  CAS  Google Scholar 

  45. B.S. Kim, D.J. Mooney, Trends Biotechnol 16, 224 (1998). doi:10.1016/S0167-7799(98)01191-3

    Article  PubMed  CAS  Google Scholar 

  46. D. Ingber, S. Karp, G. Plopper, L. Hansen, D.J. Mooney, Physical forces and the mammalian cell (Academic Press, New York, 1993)

    Google Scholar 

  47. LC Lu, X Zhu, RG Valenzuela, BL Currier, MJ Yaszemski, Clin. Orthop. Relat. R. S251 (2001)

  48. K.H. Bouhadir, K.Y. Lee, E. Alsberg, K.L. Damm, K.W. Anderson, D.J. Mooney, Biotechnol. Prog 17, 945 (2001). doi:10.1021/bp010070p

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from National Great Project of Science and Technology Supporting Programs of China during the 11th Five-year Plan (No. 2006BAI16B03) and National Natural Science Foundation of China (No. 50803032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingling Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, R., Niu, X., Gan, S. et al. Preparation and characterization of an injectable composite. J Mater Sci: Mater Med 20, 1245–1253 (2009). https://doi.org/10.1007/s10856-009-3692-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3692-6

Keywords

Navigation