Skip to main content
Log in

An in vitro release study of 5-fluoro-uracil (5-FU) from swellable poly-(2-hydroxyethyl methacrylate) (PHEMA) nanoparticles

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Nanomaterials are at the leading edge of the rapidly developing field of nanotechnology. The use of nanoparticles as drug delivery vehicles for anticancer therapeutics has great potential to revolutionize the future of cancer therapy. The present paper concerns both the optimizations of anticancer drug loading and its release from polymeric nanoparticles. The major aim of this study was to design poly (HEMA) nanoparticles as swelling controlled drug release system for anticancer drug. The prepared nanoparticles were characterized by Infra-Red (IR) Spectra, Particle size Analysis, and Scanning Electron Microscopy (SEM). The nanoparticles were loaded with widely used anticancer drug, 5-Fluorouracil, and controlled release of drug was investigated to observe the effects of various parameters such as percent loading of the drug, chemical architecture of the nanocarriers, pH, temperature, and nature of release media on the release profiles. The chemical stability of 5-Fluorouracil (5-FU) was also tested in phosphate buffer saline (PBS) (pH = 7.4) and release was studied in various simulated biological fluids. The prepared nanoparticles could provide a possible pathway for controlled and targeted delivery of anticancer drug, thus causing lower side effects and higher efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. C.R. Dass, P.F.M. Choong, Cancer Cell. Int. 6, 17 (2006). doi:10.1186/1475-2867-6-17

    Article  PubMed  Google Scholar 

  2. D. Paolino, M. Fresta, P. Sinha, M. Ferrari, Encyclopedia of Medical Devices and Instrumentation, 2nd edn (2006)

  3. C.R. Dass, M.A. Burton, Cancer Biother. Radiopharm. 17, 501–505 (2002). doi:10.1089/108497802760804727

    Article  PubMed  CAS  Google Scholar 

  4. J.W. Park, C.C. Benz, F. Martin, Semin. Oncol. 31(6 suppl 13), 196–205 (2004)

    Article  PubMed  CAS  Google Scholar 

  5. D.A. LaVan, T. McGuire, R. Langer, Nat. Biotechnol. 21(10), 1184–1191 (2003)

    Article  PubMed  CAS  Google Scholar 

  6. R. Langer, N.A. Peppas, AICHE 49, 12 (2003). doi:10.1002/aic.690491202

    Article  Google Scholar 

  7. L.G. Griffith, Acta Mater. 48, 263–277 (2000). doi:10.1016/S1359-6454(99)00299-2

    Article  CAS  Google Scholar 

  8. M.N.V. Ravi Kumar, J. Pharm. Pharmceut. Sci. 3(2), 234–258 (2000)

    CAS  Google Scholar 

  9. H.M. Redhead, S.S. Davis, L. Illum, J. Control Release 70, 353–363 (2001). doi:10.1016/S0168-3659(00)00367-9

    Article  PubMed  CAS  Google Scholar 

  10. G. Barrat, Cell Mol. Life Sci. 60, 21–37 (2003). doi:10.1007/s000180300002

    Article  Google Scholar 

  11. A.K. Bajpai, J. Choubey, J. Mater. Sci. Mater. Med. 17, 345–358 (2006). doi:10.1007/s10856-006-8235-9

    Article  PubMed  CAS  Google Scholar 

  12. I. Brigger, C. Dubernet, P. Couvreur, Adv. Drug Deliv. Rev. 54(5), 631–651 (2002). doi:10.1016/S0169-409X(02)00044-3

    Article  PubMed  CAS  Google Scholar 

  13. M.L. Hans, M.A. Lowman, Curr. Opin. Solid State Mater. Sci. 6(4), 319 (2002). doi:10.1016/S1359-0286(02)00117-1

    Article  CAS  Google Scholar 

  14. J. Panyam, V. Labhasetwar, Adv. Drug Deliv. Rev. 55(3), 329 (2003). doi:10.1016/S0169-409X(02)00228-4

    Article  PubMed  CAS  Google Scholar 

  15. H. Maeda, J. Wu, T. Sawa, Y. Matsumura, K. Hori, J. Control Release 65, 279–284 (2002)

    Google Scholar 

  16. J. Kaul, M. Amiji, Pharm. Res. 19(7), 1061–1067 (2002). doi:10.1023/A:1016486910719

    Article  PubMed  CAS  Google Scholar 

  17. L. Brannon-Peppas, J. Blanchette, Adv. Drug Deliv. Rev. 56, 1649–1659 (2004). doi:10.1016/j.addr.2004.02.014

    Article  PubMed  CAS  Google Scholar 

  18. P.C. Nicolson, J. Vogt, Biomaterials 22, 3273–3283 (2001). doi:10.1016/S0142-9612(01)00165-X

    Article  PubMed  CAS  Google Scholar 

  19. L. Flynn, P.D. Dalton, M.S. Shoichet, Biomaterials 24, 4265–4272 (2003). doi:10.1016/S0142-9612(03)00334-X

    Article  PubMed  CAS  Google Scholar 

  20. Y.W. Yang, J.S. Lee, I. Kim, Y.J. Jung, Y.M. Kim, Eur. J. Pharm. Biopharm. 66, 260–267 (2006)

    Google Scholar 

  21. J.L. Grem, D. Nguyen, B.P. Monahem, V. Kao, F.J. Geoffrey, Biochem. Pharmacol. 58, 477–486 (1999). doi:10.1016/S0006-2952(99)00099-4

    Article  PubMed  CAS  Google Scholar 

  22. F. Puoci, F. Iemma, G. Cirillo, N. Picci, P. Matricardi, F. Alhaique, Molecules 12, 805–814 (2007). doi:10.3390/12040805

    Article  PubMed  CAS  Google Scholar 

  23. Z. Hilt, M.E. Byrne, Adv. Drug Deliv. Rev. 56, 1599–1620 (2004). doi:10.1016/j.addr.2004.04.002

    Article  PubMed  CAS  Google Scholar 

  24. R.H. Parikh, J.R. Parikh, R.R. Dubey, H.N. Soni, K.A. Kapadia, AAPS PharmSciTech. 4(2), 13 (2003). doi:10.1208/pt040213

    Article  Google Scholar 

  25. C. Kiparissides, S. Alexandridou, O. Kammona, E. Dini, Workshop of CPERI (2002)

  26. P. Couvreur, G. Barratt, E. Fattal, P. Legrand, C. Vauthier, Crit. Rev. Ther. Drug Carrier Syst. 19, 99–134 (2002). doi:10.1615/CritRevTherDrugCarrierSyst.v19.i2.10

    Article  PubMed  CAS  Google Scholar 

  27. E. Karadag, D. Saraydin, Turk. J. Chem. 26, 863–875 (2002)

    CAS  Google Scholar 

  28. A.K. Bajpai, S. Shukla, J. Bajpai, J. Macromol. Res. 11, 273 (2003)

    Google Scholar 

  29. V.J. Mohanraj, Y. Chen, Trop. J. Pharm. Res. 5(1), 561–573 (2006)

    Google Scholar 

  30. L.F. Wang, W.B. Chen, Y.B. Chen, S.C. Lu, J. Biomater. Sci. Polym. Ed. 14(1), 27 (2003). doi:10.1163/15685620360511128

    Article  PubMed  CAS  Google Scholar 

  31. G. Oberdoster, Z. Sharp, V. Atudorie, A.C.P. Elder, R. Gelin, A. Lunts, W. Krefing, C. Cox, J. Toxicol. Environ. Health 65A, 1531–1543 (2002)

    Google Scholar 

  32. A.K. Bajpai, M. Rajpoot, J. Appl. Poym. Sci. 81, 1238–1247 (2000). doi:10.1002/app.1546

    Article  Google Scholar 

  33. M.V. Risbud, A.A. Hardikar, S.V. Bhat, R.R. Bhonde, J. Control Release 68, 23–30 (2000). doi:10.1016/S0168-3659(00)00208-X

    Article  PubMed  CAS  Google Scholar 

  34. A.K. Bajpai, J. Mater. Sci. Mater. Med. 15, 583–592 (2004). doi:10.1023/B:JMSM.0000026380.40151.28

    Article  PubMed  CAS  Google Scholar 

  35. A.K. Bajpai, Smitha Bhanu, J. Mater. Sci. Mater. Med. 18, 1613–1621 (2007). doi:10.1007/s10856-007-3020-y

    Article  PubMed  CAS  Google Scholar 

  36. A.K. Bajpai, Abhilasha Mishra, Polym. Int. 54, 1347–1356 (2005). doi:10.1002/pi.1839

    Article  CAS  Google Scholar 

  37. B. Tahar, M. Bêoukhel, C. Cadric, R. Jerome, Acta Pharm. 57, 301–314 (2007). doi:10.2478/v10007-007-0024-6

    Article  Google Scholar 

  38. A.K. Bajpai, Rajesh Saini, Polym. Int. 54(5), 796–806 (2005). doi:10.1002/pi.1773

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Bajpai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chouhan, R., Bajpai, A.K. An in vitro release study of 5-fluoro-uracil (5-FU) from swellable poly-(2-hydroxyethyl methacrylate) (PHEMA) nanoparticles. J Mater Sci: Mater Med 20, 1103–1114 (2009). https://doi.org/10.1007/s10856-008-3677-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3677-x

Keywords

Navigation