Skip to main content
Log in

Microwave mediated rapid synthesis of chitosan

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Chitosan is synthesized by deacetylating chitin with NaOH solution under microwave irradiation. The process describes a rapid synthesis procedure in comparison to conventional methods. The microwave-synthesized chitosan was characterized by Ninhydrin test, Fourier transform-infrared spectroscopy and X-ray diffraction measurements. The experimental results show that the degree of deacetylation increased with increasing irradiation time. A degree of deacetylation of 85.3% was achieved after irradiating chitin with 45% NaOH solution in a microwave for 5.5 min at 900-watt power. This method can be very useful for synthesizing low molecular weight chitosan with rapid and clean chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. C.M. Elson, D.H. Davies, E.R. Hayes, Removal of arsenic from contaminated drinking water by a chitosan/chitin mixture. Water Res. 14, 1307–1311 (1980). doi:10.1016/0043-1354(80)90190-6

    Article  CAS  Google Scholar 

  2. M. Yilmaz, G. Bayramoglu, M.Y. Arica, Separation and purification of lysozyme by reactive green 19 immobilized membrane affinity chromatography. Food Chem. 89, 11–18 (2005). doi:10.1016/j.foodchem.2004.01.072

    Article  CAS  Google Scholar 

  3. E. Pascual, M.R. Julià, The role of chitosan in wool finishing. J. Biotechnol. 89, 289–296 (2001). doi:10.1016/S0168-1656(01)00311-X

    Article  PubMed  CAS  Google Scholar 

  4. X.G. Chen, C.H. Liu, C.G. Liu, X.H. Meng, C.M. Lee, H.J. Park, Preparation and biocompatibility of chitosan microcarriers as biomaterial. Biochem. Eng. J. 27, 269–274 (2006). doi:10.1016/j.bej.2005.08.021

    Article  CAS  Google Scholar 

  5. P. Gualtieri, L. Barsanti, V. Passarelli, Harvesting Euglena fracilis cells with a nontoxic flocculant. J. Microbiol. Methods 8, 327–332 (1988). doi:10.1016/0167-7012(88)90031-0

    Article  Google Scholar 

  6. H.K. No, N.Y. Park, S.H. Lee, S.P. Meyers, Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int. J. Food Microbiol. 74, 65–72 (2002). doi:10.1016/S0168-1605(01)00717-6

    Article  PubMed  CAS  Google Scholar 

  7. S. Roller, N. Covill, The antifungal properties of chitosan in laboratory media and apple juice. Int. J. Food Microbiol. 47, 67–77 (1999). doi:10.1016/S0168-1605(99)00006-9

    Article  PubMed  CAS  Google Scholar 

  8. A.D. Sezer, J. Akbuga, Release characteristics of chitosan treated alginate beads: II. Sustained release of a low molecular drug from chitosan treated alginate beads. J. Microencapsul. 16, 687–696 (1999). doi:10.1080/026520499289176

    Article  PubMed  CAS  Google Scholar 

  9. U. Guliyeva, F. Öner, S. Özsoy, R. Haziroğlu, Chitosan microparticles containing plasmid DNA as potential oral gene delivery system. Eur. J. Pharm. Biopharm. 62, 17–25 (2006). doi:10.1016/j.ejpb.2005.08.006

    Article  PubMed  CAS  Google Scholar 

  10. Z. Li, H.R. Ramay, K.D. Hauch, D. Xiao, M. Zhang, Chitosan–alginate hybrid scaffolds for bone tissue engineering. Biomaterials 26, 3919–3928 (2005). doi:10.1016/j.biomaterials.2004.09.062

    Article  PubMed  CAS  Google Scholar 

  11. A. Castelli, L. Bergamasco, P.L. Beltrame, B. Focher, Adv. Chitin Sci. 1, 198–203 (1996)

    CAS  Google Scholar 

  12. S. Mima, M. Miya, M. Iwamoto, S. Yoshikawa, Highly deacetylated chitosan and its properties. J. Appl. Polym. Sci. 28, 1909–1917 (1983). doi:10.1002/app.1983.070280607

    Article  CAS  Google Scholar 

  13. I. Batista, G.A.F. Roberts, A novel, facile technique for deacetylating chitin. Makromol Chem. 191, 429–434 (1990). doi:10.1002/macp.1990.021910217

    Article  CAS  Google Scholar 

  14. A. Martinou, D. Kafetzopoulos, V. Bouriotis, Chitin deacetylation by enzymatic means: monitoring of deacetylation processes. Carbohydr. Res. 273, 235–242 (1995). doi:10.1016/0008-6215(95)00111-6

    Article  CAS  Google Scholar 

  15. P. Nahar, U. Bora, Microwave-mediated rapid immobilization of enzymes onto an activated surface through covalent bonding. Anal. Biochem. 328, 81–83 (2004). doi:10.1016/j.ab.2003.12.031

    Article  PubMed  CAS  Google Scholar 

  16. H.C. Ge, D.K. Luo, Preparation of carboxymethyl chitosan in aqueous solution under microwave irradiation. Carbohydr. Res. 340, 1351–1356 (2005). doi:10.1016/j.carres.2005.02.025

    Article  PubMed  CAS  Google Scholar 

  17. L. Liu, Y. Li, Y. Li, Y.E. Fang, Rapid N-phthaloylation of chitosan by microwave irradiation. Carbohydr. Polymers 57, 97–100 (2004). doi:10.1016/j.carbpol.2004.04.009

    Article  CAS  Google Scholar 

  18. V. Singh, A. Tiwari, D.N. Tripathi, R. Sanghi, Microwave enhanced synthesis of chitosan-graft-polyacrylamide. Polymer 47, 254–260 (2006). doi:10.1016/j.polymer.2005.10.101

    Article  CAS  Google Scholar 

  19. Q.T. Peniston, E.L. Johnson, Process for activating chitin by microwave treatment and improved activated chitin product. Patent USPTO 4159932, 1979

  20. S. Prochazkova, K.M. Vårum, K. Ostgaard, Quantitative determination of chitosans by ninhydrin. Carbohydr. Polymers 38, 115–122 (1999). doi:10.1016/S0144-8617(98)00108-8

    Article  CAS  Google Scholar 

  21. P.R. Rege, L.H. Block, Chitosan processing: influence of process parameters during acidic and alkaline hydrolysis and effect of the processing sequence on the resultant chitosan’s properties. Carbohydr. Res. 321, 235–245 (1999). doi:10.1016/S0008-6215(99)00172-X

    Article  CAS  Google Scholar 

  22. D.R. Bhumkar, V.B. Pokharkar, Studies on effect of pH on cross-linking of chitosan with sodium tripolyphosphate: a technical note. AAPS Pharm. Sci. Tech. 7(2), (2006)

  23. J. Majtán, K. Bíliková, O. Markovič, J. Gróf, G. Kogan, J. Šimúth, Isolation and characterization of chitin from bumblebee (Bombus terrestris). Int. J. Biol. Macromol. 40, 237–241 (2007). doi:10.1016/j.ijbiomac.2006.07.010

    Article  PubMed  Google Scholar 

  24. A.T. Paulino, J.I. Simionato, J.C. Garcia, J. Nozaki, Characterization of chitosan and chitin produced from silkworm chrysalides. Carbohydr. Polymers 64, 98–103 (2006). doi:10.1016/j.carbpol.2005.10.032

    Article  CAS  Google Scholar 

  25. M.L. Duarte, M.C. Ferreira, M.R. Marvão, J. Rocha, An optimised method to determine the degree of acetylation of chitin and chitosan by FTIR spectroscopy. Int. J. Biol. Macromol. 31, 1–8 (2002). doi:10.1016/S0141-8130(02)00039-9

    Article  PubMed  CAS  Google Scholar 

  26. Y. Zhang, C. Xue, Y. Xue, R. Gao, X. Zhang, Determination of the degree of deacetylation of chitin and chitosan by X-ray powder diffraction. Carbohydr. Res. 340, 1914–1917 (2005). doi:10.1016/j.carres.2005.05.005

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the Department of Biotechnology, Govt. of India project (BT/PR6759/BRB/10/446/2005). A. Sahu thanks MHRD, Govt of India and IITG for the financial support in the form of fellowship. We thank the reviewers for their constructive criticism and critical inputs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Utpal Bora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahu, A., Goswami, P. & Bora, U. Microwave mediated rapid synthesis of chitosan. J Mater Sci: Mater Med 20, 171–175 (2009). https://doi.org/10.1007/s10856-008-3549-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3549-4

Keywords

Navigation