Skip to main content

Advertisement

Log in

Antibacterial coatings for medical devices based on glass polyalkenoate cement chemistry

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A biofilm is an accumulation of micro-organisms and their extracellular products forming a structured community on a surface. Biofilm formation on medical devices has severe health consequences as bacteria growing in this lifestyle are tolerant to both host defense mechanisms and antibiotic therapies. However, silver and zinc ions inhibit the attachment and proliferation of immature biofilms. The objective of this study is to evaluate whether it is possible to produce silver and zinc-containing glass polyalkenoate cement (GPC) coatings for medical devices that have antibacterial activity and which may therefore inhibit biofilm formation on a material surface. Two silver and zinc-containing GPC coatings (A and B) were synthesised and coated onto Ti6Al4V discs. Their handling properties were characterised and atomic absorption spectrometery was employed to determine zinc and silver ion release with coating maturation up to 30 days. The antibacterial properties of the coatings were also evaluated against Staphylococcus aureus and a clinical isolate of Pseudomonas aeruginosa using an agar diffusion assay method. The majority of the zinc and silver ions were released within the first 24 h; both coatings exhibited antibacterial effect against the two bacterial strains, but the effect was more intense for B which contained more silver and less zinc than A. Both coatings produced clear zones of inhibition with each of the two organisms tested. In this assay, Ps. aeruginosa was more sensitive than S. aureus. The diameters of these zones were reduced after the coating had been immersed in water for varying periods due to the resultant effect on ion release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. R.M. Donlan, J.W. Costerton, Clin. Microbiol. Rev. 15, 167 (2002). doi:10.1128/CMR.15.2.167-193.2002

    Article  CAS  Google Scholar 

  2. M.S.U. The Center for Biofilm Engineering, A friendly guide to biofilm basics & the CBE (Montana, 1999)

  3. P. Tenke, C.R. Riedl, G.L.I. Jones, G.J. Williams, D. Stickler, E. Nagy, Int. J. Antimicrob. Agents 23, 67 (2004). doi:10.1016/j.ijantimicag.2003.12.007

    Article  CAS  Google Scholar 

  4. R.M. Donlan, Emerg. Infect. Dis. 7, 277 (2001)

    Article  CAS  Google Scholar 

  5. S.K. Filoche, M. Zhu, C.D. Wu, J. Dent. Res. 83, 802 (2004)

    CAS  Google Scholar 

  6. S. Crisp, A.D. Wilson, J. Dent. Res. 53, 1420 (1974)

    CAS  Google Scholar 

  7. D. Boyd, H. Li, D.A. Tanner, M.R. Towler, J.G. Wall, J. Mat. Sci. Mater. Med. 17, 489 (2006). doi:10.1007/s10856-006-8930-6

    Article  CAS  Google Scholar 

  8. H. Forss, J. Dent. Res. 72, 1257 (1993)

    CAS  Google Scholar 

  9. S.B. Mitra, Abstr. Pap. Am. Chem. Soc. 202, 262 (1991)

    Google Scholar 

  10. J.W. Nicholson, Biomaterials 19, 485 (1998). doi:10.1016/S0142-9612(97)00128-2

    Article  CAS  Google Scholar 

  11. S.G. Griffin, R.G. Hill, Biomaterials 20, 1579 (1999). doi:10.1016/S0142-9612(99)00058-7

    Article  CAS  Google Scholar 

  12. M.C. Blades, D.P. Moore, P.A. Revell, R. Hill, J. Mater. Sci. Mater. Med. 9, 701 (1998). doi:10.1023/A:1008990516159

    Article  CAS  Google Scholar 

  13. C. Exley, J. Inorg. Biochem. 76, 133 (1999). doi:10.1016/S0162-0134(99)00125-7

    Article  CAS  Google Scholar 

  14. P. Zatta, T. Kiss, M. Suwalsky, G. Berthon, Coord. Chem. Rev. 228, 271 (2002). doi:10.1016/S0010-8545(02)00074-7

    Article  CAS  Google Scholar 

  15. L.D. Quarles, G. Murphy, J.B. Vogler, M.K. Drezner, J. Bone Miner. Res. 5, 625 (1990)

    Article  CAS  Google Scholar 

  16. D. Boyd, H. Li, D.A. Tanner, M.R. Towler, J.G. Wall, J. Mater. Sci. Mater. Med. 17, 489 (2006). doi:10.1007/s10856-006-8930-6

    Article  CAS  Google Scholar 

  17. J. Foley, A. Blackwellb, Caries Res. 37, 416 (2003). doi:10.1159/000073393

    Article  CAS  Google Scholar 

  18. P.W.R. Osinaga, R.H.M. Grande, R.Y. Ballester, M.R.L. Simionato, C.R.M. Delgado Rodrigues, A. Muench, Dent. Mater. 19, 212 (2003). doi:10.1016/S0109-5641(02)00032-5

    Article  CAS  Google Scholar 

  19. E. Odell, C. Pertl, Oral. Surg. Oral. Med. Oral. Pathol. 79, 82 (1995)

    CAS  Google Scholar 

  20. J. Sheng, P.T.M. Nguyen, R.E. Marquis, Arch. Oral. Biol. 50, 747 (2005). doi:10.1016/j.archoralbio.2005.01.003

    Article  CAS  Google Scholar 

  21. L.A. Sampath, N. Chowdhury, L. Caraos, S.M. Modak, J. Hosp. Infect. 30, 201 (1995). doi:10.1016/S0195-6701(95)90315-1

    Article  CAS  Google Scholar 

  22. G. Cook, J.W. Costerton, R.O. Darouiche, Int. J. Antimicrob. Agents 13, 169 (2000). doi:10.1016/S0924-8579(99)00120-X

    Article  CAS  Google Scholar 

  23. T. Maneerung, S. Tokura, R. Rujiravanit, Carbohydr. Polym. 72, 43 (2008). doi:10.1016/j.carbpol.2007.07.025

    Article  CAS  Google Scholar 

  24. D.R. Carter, W.C. Hayes, Science 194, 1174 (1976). doi:10.1126/science.996549

    Article  CAS  Google Scholar 

  25. C. Burgess, Valid Analytical Methods & Procedures Handbook (Royal Society of Chemistry, Cambridge, 2000)

  26. D. Boyd, M. Towler, A. Wren, O. Clarkin, J. Mater. Sci. Mater. Med. 19, 1745 (2008). doi:10.1007/s10856-007-3363-4

    Article  CAS  Google Scholar 

  27. D. Boyd, O.M. Clarkin, A.W. Wren, M.R. Towler, Acta Biomater. 4, 425 (2008). doi:10.1016/j.actbio.2007.07.010

    Article  CAS  Google Scholar 

  28. D. Boyd, M. Towler, J. Mater. Sci. Mater. Med. 16, 843 (2005). doi:10.1007/s10856-005-3578-1

    Article  CAS  Google Scholar 

  29. A. Wren, D. Boyd, M.R. Towler, J. Mat. Sci. Mater. Med. 19, 1737 (2007). doi:10.1007/s10856-007-3287-z

    Article  CAS  Google Scholar 

  30. B. Fennell, R.G. Hill, J. Mater. Sci. 36, 5185 (2001). doi:10.1023/A:1012493811967

    Article  CAS  Google Scholar 

  31. A.S.T.D.R. Toxicological Profile for Zinc (Agency for Toxic Substances and Disease Registry, Atlanta, GA, 2005).

  32. R.A. Faust, Toxicology summary for silver (U.S. Department of Energy, Oak Ridge, TN, 1992)

    Google Scholar 

  33. M.M. Cowan, K.Z. Abshire, S.L. Houk, S.M. Evans, J. Ind. Microbiol. Biotechnol. 30, 102 (2003)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Towler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coughlan, A., Boyd, D., Douglas, C.W.I. et al. Antibacterial coatings for medical devices based on glass polyalkenoate cement chemistry. J Mater Sci: Mater Med 19, 3555–3560 (2008). https://doi.org/10.1007/s10856-008-3519-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3519-x

Keywords

Navigation