Skip to main content

Advertisement

Log in

Precipitation of calcium phosphate in the presence of albumin on titanium implants with four different possibly bioactive surface preparations. An in vitro study

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The aim of the present study was to compare the nucleating behaviour on four types of bioactive surfaces by using the simulated body fluid (SBF) model with the presence albumin. Titanium discs were blasted (B) and then prepared by alkali and heat treatment (AH), anodic oxidation (AO), fluoridation (F), or hydroxyapatite coating (HA). The discs were immersed in SBF with 4.5 mg/ml albumin for 3 days, 1, 2, 3 and 4 weeks and analysed with scanning electron microscopy/energy dispersive X-ray analysis (SEM/EDX) and X-ray photoelectron spectroscopy (XPS). Topographic surface characterisation was performed with a contact stylus profilometer. The results demonstrated that the bioactive surfaces initiated an enhanced calcium phosphate (CaP) formation and a more rapid increase of protein content was present on the bioactive surfaces compared to the blasted control surface. The observation was present on all bioactive surfaces. The fact that there was a difference between the bioactive surfaces and the blasted control surface with respect to precipitation of CaP and protein content on the surfaces support the fact that there may be biochemical advantages in vivo by using a bioactive surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Hench, Handbook of bioactive ceramics (CRC press, Boca Raton, 1990), p. 7

    Google Scholar 

  2. H.M. Kim, F. Miyaji, T. Kokubo, T. Nakamura, J. Mater. Sci. Mater. Med. 8, 341 (1997). doi:10.1023/A:1018524731409

    Article  CAS  Google Scholar 

  3. Y.T. Sul, C. Johansson, E. Byon, T. Albrektsson, Biomaterials 26, 6720 (2005). doi:10.1016/j.biomaterials.2005.04.058

    Article  CAS  Google Scholar 

  4. J.E. Ellingsen, J Mater Sci Mater Med 6, 749 (1995). doi:10.1007/BF00134312

    Article  CAS  Google Scholar 

  5. M. Gottlander, T. Albrektsson, L.V. Carlsson, Int. J. Oral Maxillofac. Implants 7, 485 (1992)

    CAS  Google Scholar 

  6. T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, J. Biomed. Mater. Res. 24, 721 (1990). doi:10.1002/jbm.820240607

    Article  CAS  Google Scholar 

  7. T. Peltola, M. Patsi, H. Rahiala, I. Kangasniemi, A. Yli-Urpo, J. Biomed. Mater. Res. 41, 504 (1998). doi:10.1002/(SICI)1097-4636(19980905)41:3<504::AID-JBM22>3.0.CO;2-G

    Article  CAS  Google Scholar 

  8. H. Takadama, H.M. Kim, T. Kokubo, T. Nakamura, J. Biomed. Mater. Res. 57, 441 (2001). doi:10.1002/1097-4636(20011205)57:3<441::AID-JBM1187>3.0.CO;2-B

    Article  CAS  Google Scholar 

  9. T. Kokubo, H. Takadama, Biomaterials 27, 2907 (2006). doi:10.1016/j.biomaterials.2006.01.017

    Article  CAS  Google Scholar 

  10. Y. Liu, P. Layrolle, J. De Brujin, C. Van Blitterswijk, K. De Groot, J. Biomed. Mater. Res. 57, 327 (2001). doi:10.1002/1097-4636(20011205)57:3<327::AID-JBM1175>3.0.CO;2-J

    Article  CAS  Google Scholar 

  11. A. Arvidsson, V. Franke Stenport, M. Andersson, P. Kjellin, T. Sul, A. Wennerberg. J. Mater. Sci. 18, 1945 (2007)

    Article  CAS  Google Scholar 

  12. H. Wen, J. de Wijn, K. De Groot, J. Biomed. Mater. Res. 46, 245 (1999). doi:10.1002/(SICI)1097-4636(199908)46:2<245::AID-JBM14>3.0.CO;2-A

    Article  CAS  Google Scholar 

  13. C. Combes, C. Rey, M. Freche, J. Mater. Sci. 10, 153 (1999). doi:10.1023/A:1008933406806

    Article  CAS  Google Scholar 

  14. H. Zeng, K. Chittur, W. Lacefield, Biomaterials 20, 377 (1999). doi:10.1016/S0142-9612(98)00184-7

    Article  CAS  Google Scholar 

  15. H. Takadama, H.M. Kim, T. Kokubo, T. Nakamura, J. Biomed. Mater. Res. 57, 441 (2001). doi:10.1002/1097-4636(20011205)57:3<441::AID-JBM1187>3.0.CO;2-B

    Article  CAS  Google Scholar 

  16. H.M. Kim, F. Miyaji, T. Kokubo, T. Nakamura, J Mater Sci Mater Med 8, 341 (1997). doi:10.1023/A:1018524731409

    Article  CAS  Google Scholar 

  17. H.M. Kim, F. Miyaji, T. Kokubo, S. Nishiguchi, T. Nakamura, J. Biomed. Mater. Res. 45, 100 (1999). doi:10.1002/(SICI)1097-4636(199905)45:2<100::AID-JBM4>3.0.CO;2-0

    Article  CAS  Google Scholar 

  18. Y.T. Sul, C.B. Johansson, Y. Jeong, T. Albrektsson, Med. Eng. Phys. 23, 329 (2001). doi:10.1016/S1350-4533(01)00050-9

    Article  CAS  Google Scholar 

  19. A. Oyane, H.M. Kim, T. Furuya, T. Kokubo, T. Miyazaki, T. Nakamura, J. Biomed. Mater. Res. 65A, 188 (2003). doi:10.1002/jbm.a.10482

    Article  CAS  Google Scholar 

  20. T. Albrektsson, A. Wennerberg, Int. J. Prosth. 17, 536 (2004)

    Google Scholar 

  21. K.J. Stout, P.J. Sullivan, W.P. Dong, E. Mainsah, N. Luo, T. Mathia et al., The development of methods for characterisation of roughness in three dimensions. EUR 15178 EN of commission of the European Communities (University of Birmingham, Birmingham, 1993)

    Google Scholar 

  22. A.J. Vander, J.H. Sherman, D.S. Luciano, in Human physiology. The mechanisms of body function, 5th ed. (McGraw-Hill Publishing Company, New York, 1990), p. 349

  23. X. Lu, Y. Leng, X. Zhang, J. Xu, L. Qin, C. Chan, Biomaterials 26, 1793 (2005). doi:10.1016/j.biomaterials.2004.06.009

    Article  CAS  Google Scholar 

  24. S. Areva, H. Pladan, T. Peltola, T. Närhi M. Jokinen, M. Lindèn, Biomed. Mater. Res. 70A:169 (2004). doi:10.1002/jbm.a.20120

    Google Scholar 

  25. Y. Liu, E. Hunziker, P. Layrolle, C. Van Blitterwijk, P. Calvert, K. De Groot, J. Biomed. Mater. Res. 67A, 1155 (2003). doi:10.1002/jbm.a.20019

    Article  CAS  Google Scholar 

  26. Y. Liu, E. Hunziker, N. Randall, K. De Groot, P. Layrolle, Biomaterials 24, 65 (2003). doi:10.1016/S0142-9612(02)00252-1

    Article  Google Scholar 

  27. D. Wasell, G. Embery, Biomaterials 17, 859 (1996). doi:10.1016/0142-9612(96)83280-7

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Christian Erneklint at the Dept of Prosthetic Dentistry/Dental Materials Science, Göteborg University for kindly heat treating the alkali specimens. The authors also thank the Swedish Research Council, Hjalmar Svensson Research Foundation, Knut and Alice Wallenberg Foundation, the Wilhelm and Martina Lundgren Science Foundation, the Royal Society of Arts and Sciences in Göteborg, the Adlerbert Foundation, the Biointerface project of the Ministry of Science and Technology, Republic of Korea for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Stenport.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stenport, V., Kjellin, P., Andersson, M. et al. Precipitation of calcium phosphate in the presence of albumin on titanium implants with four different possibly bioactive surface preparations. An in vitro study. J Mater Sci: Mater Med 19, 3497–3505 (2008). https://doi.org/10.1007/s10856-008-3517-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3517-z

Keywords

Navigation