Skip to main content
Log in

Bone resembling apatite by amorphous-to-crystalline transition driven self-organisation

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Calcium apatite is the main inorganic constituent of mammalian hard tissues such as bones and teeth. Its formation in vivo is likely to be preceded by a transient amorphous phase. If so, the amorphous-to-crystalline transition would have some crucial role in the biomineralisation process. To investigate this possibility, a two-step biomimetic experiment was designed. First, a stable amorphous calcium apatite precursor was synthesized in simulated body fluid (SBF) and was then transformed into a low crystalline apatite. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, vacuum FTIR, inductively coupled plasma-atomic emission spectrometry (ICP-AES), scanning electron microscopy (SEM) and N2 adsorption measurements were used to characterise both the precursor and the apatite. The latter exhibits numerous bone-like features including lack of OH, nanometer size, low crystallinity, etc. An amorphous-to-crystalline transition driven self-organisation is observed. The amorphous precursor seems to be the essential step for the creation of bone resembling apatite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. V. DOROZHKIN and M. EPPLE, Angew. Chem. Int. Ed. 41 (1969) 3130

    Article  Google Scholar 

  2. A. S. POSNER, Physiol. Rev. 49 (1969) 760

    CAS  Google Scholar 

  3. F. BETTS, N. C. BLUMENTHAL and A. S. POSNER, J. Cryst. Growth 53 (1981) 64

    Article  Google Scholar 

  4. H. M. KIM, T. HIMENO, T. KOKUBO and T. NAKAMURA, Biomaterials. 26 (2005) 4366

    Article  CAS  Google Scholar 

  5. A. C. TAS, Biomaterials 21 (2000) 1429

    Article  CAS  Google Scholar 

  6. P. A. A. P. MARQUES, M. C. F. MAGALHÃES and R. N. CORREIA, Biomaterials. 24 (2003) 1541

    Article  CAS  Google Scholar 

  7. A. BIGI, E. BOANINI, S. PANZAVOLTA and N. ROVERI, Biomacromolecules. 1 (2000) 752

    Article  CAS  Google Scholar 

  8. A. BIGI, E. BOANINI, S. PANZAVOLTA, N. ROVERI and K. RUBINI, J. Biomed. Mater. Res. 59 (2002) 709

    Article  CAS  Google Scholar 

  9. K. ONUMA, J. Phys. Chem. B. 109 (2005) 8257

    Article  CAS  Google Scholar 

  10. G. HE, T. DAHL, A. VEIS and A. GEORGE, Nat. Mater. 2 (2003) 552

    Article  CAS  Google Scholar 

  11. W. B. VALHMU, L. N. Y. WU and R. E. WUTHIER, Bone Miner. 8 (1990) 195

    Article  CAS  Google Scholar 

  12. L. N. Y. WU, G. R. SAUER, B. R. GENGE, W. B. VALHMU and R. E. WUTHIER, J. Inorg. Biochem. 94 (2003) 221

    Article  CAS  Google Scholar 

  13. K. ONUMA and A. ITO, Chem. Mater. 10 (1998) 3346

    Article  CAS  Google Scholar 

  14. A. OYANE, K. ONUMA, A. ITO, H. M. KIM, T. KOKUBO and T. NAKAMURA, J. Biomed. Mater. Res. 64A (2003) 339

    Article  CAS  Google Scholar 

  15. X. YIN and M. J. STOTT, J. Chem. Phys. 118 (2003) 3717

    Article  CAS  Google Scholar 

  16. J. D. PASTERIS, B. WOPENKA, J. J. FREEMAN, K. ROGERS, E. VALSAMI-JONES, J. A. M. VAN DER HOUWEN and M. J. SILVA, Biomaterials. 25 (2004) 229

    Article  CAS  Google Scholar 

  17. C. REY, J. L. MIQUEL, L. FACCHINI, A. P. LEGRAND and M. J. GLIMCHER, Bone 16 (1995) 583

    Article  CAS  Google Scholar 

  18. A. S. POSNER, J. Biomed. Mater. Res. 19 (1985) 241

    Article  CAS  Google Scholar 

  19. K. KANDORI, S. SAWAI, Y. YAMAMOTO, H. SAITO and T. ISHIKAWA, Colloid Surf. 68 (1992) 283

    Article  CAS  Google Scholar 

  20. A. L. BOSKEY and A. S. POSNER, J. Phys. Chem. 77 (1973) 2313

    Article  CAS  Google Scholar 

  21. F. ABBONA, H. E. L. MADSEN and R. BOISTELLE, J. Cryst. Growth 74 (1986) 581

    Article  CAS  Google Scholar 

  22. S. KRUMM, Mat. Sci. Forum 228–231 (1999) 183

    Google Scholar 

  23. F. PETERS, K. SCHWARZ and M. EPPLE, Thermochim. Acta 361 (2000) 131

    Article  CAS  Google Scholar 

  24. A. BIGI, G. COJAZZI, S. PANZAVOLTA, A. RIPAMONTI, N. ROVERI, M. ROMANELLO, K. NORIS Suarez and L. MORO, J. Inorg. Biochem. 68 (1997) 45

    Article  CAS  Google Scholar 

  25. G. M. BLIZNAKOV, I. V. BAKARDJIEV and E. M. GOCHEVA, J. Catal. 18 (1970) 260

    Article  CAS  Google Scholar 

  26. S. UOIZAT, A. BARROUG, A. LEGROURI and C. REY, Mater. Res. Bull. 34 (1999) 2279

    Article  Google Scholar 

  27. M. G. TAYLOR, S. F. PARKER, K. SIMKISS and P. C. H. MITCHELL, Phys. Chem. Chem. Phys. 3 (2001) 1514

    Article  CAS  Google Scholar 

  28. N. C. BLUMENTHAL, A. S. POSNER and J. M. HOLMES, Mater. Res. Bull. 7 (1972) 1181

    Article  CAS  Google Scholar 

  29. D. TADIC, F. PETERS and M. EPPLE, Biomaterials 23 (2002) 2553

    Article  CAS  Google Scholar 

  30. M. E. FLEET, X. LIU and P. L. KING, Am. Miner. 89 (2004) 1422

    CAS  Google Scholar 

  31. M. E. FLEET and X. LIU, J. Solid State Chem. 177 (2004) 3174

    Article  CAS  Google Scholar 

  32. R. ASTALA and M. J. STOTT, Chem. Mater. 17 (2005) 4125

    Article  CAS  Google Scholar 

  33. S. KOUTSOPOULOS, J. Biomed. Mater. Res. 62 (2002) 600

    Article  CAS  Google Scholar 

  34. G. BUSCA, V. LORENZELLI, P. GALLI, A. LA GINESTRA and P. PATRONO, J. Chem. Soc., Faraday Trans. 183 (1987) 853

    Google Scholar 

  35. K. D. ROGERS, P. DANIELS, Biomaterials 23 (2002) 2577

    Article  CAS  Google Scholar 

  36. L. XIONG and Y. LENG, Biomaterials 26 (2005) 1097

    Article  Google Scholar 

  37. S. WEINER and H. D. WAGNER, Annu. Rev. Mater. Sci. 28 (1998) 271

    Article  CAS  Google Scholar 

  38. H. GAO, B. JI, I. L. JÄGER, E. ARZT and P. FRATZL, Proc. Natl. Acad. Sci. USA 100 (2003) 5597

    Article  CAS  Google Scholar 

  39. R. TANG, L. WANG, C. A. ORME, T. BONSTEIN, P. J. BUSH and G. H. NANCOLLAS, Angew. Chem. Int. Ed. 43 (2004) 2697

    Article  CAS  Google Scholar 

  40. A. A. BAIG, J. L. FOX, R. A. YOUNG, Z. WANG, J. HSU, W. I. HIGUCHI, A. CHETTRY, H. ZHUANG and M. OTSUKA, Calcif. Tissue. Int. 64 (1999) 437

    Article  CAS  Google Scholar 

  41. H. K. VÄÄNÄNEN, H. ZHAO, M. MULARI and J. M. HALLEEN, J. Cell. Sci. 113 (2000) 377

    Google Scholar 

  42. G. CHO, Y. WU and J. L. ACKERMAN, Science 300 (2003) 1123

    Article  CAS  Google Scholar 

  43. M. R. SARKAR, N. WACHTER, P. PATKA and L. KINZL, J. Biomed. Mater. Res. 58 (2001) 329

    Article  CAS  Google Scholar 

  44. L. ADDADI, S. RAZ and S. WEINER, Adv. Mater. 15 (2003) 959

    Article  CAS  Google Scholar 

  45. G. E. FANTNER, T. HASSENKAM, J. H. KINDT, J. C. WEAVER, H. BIRKEDAL, L. PECHENIK, J. A. CUTRONI, G. A. G. CIDADE, G. D. STUCKY, D. E. MORSE and P. K. HANSMA, Nat. Mater. 4 (2005) 612

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (Ya. Pekounov) wishes to express his sincere gratitude to K. Chakarova for the IR technical assistance and to I. Dimov for his valuable help with the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yassen Pekounov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pekounov, Y., Petrov, O.E. Bone resembling apatite by amorphous-to-crystalline transition driven self-organisation. J Mater Sci: Mater Med 19, 753–759 (2008). https://doi.org/10.1007/s10856-007-3085-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-007-3085-7

Keywords

Navigation