Skip to main content

Advertisement

Log in

Biomedical evaluation of polyvinyl alcohol–gelatin esterified hydrogel for wound dressing

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The wound is a biosynthetic environment in which numerous cellular processes are interlinked in the process of repair. Modern dressings are designed to facilitate wound healing rather than just to cover it. Hydrogel dressing can protect injured skin and keep it appropriately moist to speed the healing process by absorbing exudates while maintaining the products of tissue repair, including growth factor and lysosomes, in contact with the wound. The design and development of novel membrane of hydrogels prepared by esterification of polyvinyl alcohol with gelatin were attempted. Contact angle of goat blood was determined. The hydrogel was characterized by hemolysis test and water vapor transmission rate. Diffusion coefficient of salicylic acid (SA) and gatifloxacin, a fourth generation fluoroquinolone, through the membrane was determined. Both the drugs were used as model drug. Methyl tetrazolium dye assay of the membrane was done using L929 fibroblast cell line and mice splenocytes to establish the biocompatibility of the membrane. The equilibrium goat blood-in-air contact angles of measured ester films ranged from 56 to 60°. The hydrogel was found to be hemocompatible and moisture retentive indicating its possible use in moist wound care. The diffusion coefficient of SA and gatifloxacin through the membrane was found to be 1.49 × 10−5 and 3.97 × 10−6 cm2/s respectively. The membrane was found to be compatible with the L929 fibroblast cell line and mice splenocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. GUPTA, K. VERMANI and S. GARG, Drug Discov. Today 7 (10) (2002) 569

    Article  CAS  Google Scholar 

  2. W. E. HENNINK and C. F. NOSTRUM van, Adv. Drug Delivery Rev. 54 (2002) 13

    Article  CAS  Google Scholar 

  3. K. KABIRI, H. OMIDIAN, S. A. HASHEMI and M. J. ZOHURIAAN-MEHR, Eur. Polym. J. 39 (2003) 1341

    Article  CAS  Google Scholar 

  4. A. K. BAJPAI and A. GIRI, Carbohyd. Polym. 53(3) (2003) 271

    Article  CAS  Google Scholar 

  5. F. ROSSO, A. BARBARISI, M. BARBARISI, O. PETILLO, S. MARGARUCCI and A. CALARCO, Mater. Sci. Eng. C23 (2003) 371

    CAS  Google Scholar 

  6. D. SARAYDIN, H. N. ÖZTOP, E. KARADAĞ, A. Y. ÖZTOP, Y. IŞIKVER and O. GÜVEN, Process Biochem. 37 (2002) 1351

    Article  CAS  Google Scholar 

  7. G. ALVAREZ-LORENZO and A. CONCHEIRO, J. Control Release 80 (2002) 247

    Article  CAS  Google Scholar 

  8. A. ACHARYA, H. MOHAN and S. SABHARVAL, Radiat. Phys. Chem. 65 (2002) 225

    Article  CAS  Google Scholar 

  9. M. E. BYRNE, K. PARK and N. A. PEPPAS, Adv. Drug Deliver Rev. 54 (2002) 149

    Article  CAS  Google Scholar 

  10. http://www.ysbl.york.ac.uk/projects/2/2.8.htm

  11. F. HORII, S. HU, T. ITO, H. ODANI and R. KITAMARU, Polymer 33 (1992) 2299

    Article  CAS  Google Scholar 

  12. N.A. PEPPAS and E.W. MERRILL J Biomed. Mater. Res. 11 (1997) 423

    Article  Google Scholar 

  13. D. OAKENFULL and A. SCOTT Food Hydrocoll. 17 (2003) 207

    Article  CAS  Google Scholar 

  14. A. BIGI, S. PANZAVOLTA and K. RUBINI, Biomaterials 25 (2004) 5675

    Article  CAS  Google Scholar 

  15. H. BABIN and E. DICKINSON Food Hydrocoll. 15 (2001) 271

    Article  CAS  Google Scholar 

  16. T. TANAKA, S. OHNISHI and K. YAMAURA, Polym. Int. 48 (1999) 811

    Article  CAS  Google Scholar 

  17. K. PAL, A. K. BANTHIA and D. K. MAJUMDAR, J Biomater. Appl. 21(1) (2006) 75

    Article  CAS  Google Scholar 

  18. R. J. YOUNG and P. A. LOVELL, Introduction to Polymers, 2nd edn, (Stanley Thornes Ltd: UK, 2004), p. 195

  19. K. PAL and S. PAL, Materials and Manufacturing Processes 21 (2006) 325

  20. ASTM E96-00e1: Standard test methods for water vapor transmission of materials

  21. Y. HU, V. TOPOLKARAEV, A. HILTNER and E. BAER, J. Appl. Polym. Sci. 81 (2001) 1624

    Article  CAS  Google Scholar 

  22. P. B. WACHEM VAN, A. H. HOGT, T. BEUGELING, J. FEYEN, A. BANTJIES, J. P. DETMERS and W. G. AKEN VAN, Biomaterials 8 (1987) 323

    Article  Google Scholar 

  23. L. L. HENCH and E. C. ETHRIDGE, Biomaterials—An Interfacial Approach, Academic Press, p. 170

  24. http://www.burnsurgery.org/Betaweb/Modules/moisthealing/part_2bc.htm

  25. B. FALK, S. GARRAMONE and S. SHIVKUMAR, Mater. Lett. 58 (2004) 3261

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Indian Institute of Technology, Kharagpur, India for funding the research. The first author is also grateful to his lab-technician and lab-mates (Mr. N. K. Mallick, Mr. A. H. Bhat, Mr. Arfat Anis, Mr. Dibakar Behera, Ms. H. Satapathy, Dr. (Mrs.) S. Mondal and Mr. P. Pawar) for their constant encouragement and support during the completion of the work. The authors are also thankful to Department of Biotechnology, Indian Institute of Technology, Kharagpur for allowing to use their laboratory for cytocompatibility tests and Ranbaxy laboratories limited, India for supplying gatifloxacin as a gift.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Banthia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pal, K., Banthia, A.K. & Majumdar, D.K. Biomedical evaluation of polyvinyl alcohol–gelatin esterified hydrogel for wound dressing. J Mater Sci: Mater Med 18, 1889–1894 (2007). https://doi.org/10.1007/s10856-007-3061-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-007-3061-2

Keywords

Navigation