Skip to main content

Advertisement

Log in

Cement from nanocrystalline hydroxyapatite: Effect of calcium phosphate ratio

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Nanocrystalline hydroxyapatite (nHA) can be mixed with phosphoric acid to form a brushite cement; a degradable inorganic bone filling material. nHA was precipitated from reactants of calcium to phosphate (Ca/P) ratio 0.8 to 2.0 and mixed with phosphoric acid, which resulted in the formation of a brushite cement. Cement was also formed by mixing microcrystalline calcium phosphates, β-tricalcium phosphate, hydroxyapatite and tetracalcium phosphate with phosphoric acid solution. Cement produced with nHA was stronger in compression than that formed with crystalline calcium phosphate phases. Setting time, strength and composition of cement produced with nHA was dependant on both the Ca/P ratio of nHA and the concentration of phosphoric acid in cement slurry. Increasing phosphoric acid concentration increased compressive strength whilst reducing the initial setting time of cement. Reducing the Ca/P ratio of nHA precipitation reactants retarded the setting and increased the extent of reaction of cements. This finding was unexpected and suggests that Ca/P ratio may strongly affect dissolution behaviour and this parameter is more important than stoichiometry in determining extent of reaction in this system. This study demonstrated that the wide variation in stoichiometry that may be attained in nanocrystalline apatite may be utilised to change cement performance and setting behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. B. KAMERER, C. D. FRIEDMAN, P. D. COSTANTINO, C. H. SNYDERMAN, and B. F. HIRSCH, Am. J. Otol. 15 (1994) 47.

    CAS  Google Scholar 

  2. J. F. KVETON, C. D. FRIEDMAN and P. D. COSTANTINO, Am. J. Otol. 16 (1995) 465.

    CAS  Google Scholar 

  3. J. F. KVETON, C. D. FRIEDMAN, J. M. PIEPMEIER and P. D. COSTANTINO, Laryngoscope 105 (1995) 156.

    CAS  ISI  Google Scholar 

  4. U. GBURECK, K. SPATZ, R. THULL and J. E. BARRALET, J. Biomed. Mater. Res. 73 (2005) 1.

    CAS  Google Scholar 

  5. K. J. LILLEY, U. GBURECK, D. F. FARRAR, C. ANSELL and J. E. BARRALET, Key Enging. Mater. 254–256 (2004) 281.

    Google Scholar 

  6. U. GBURECK, J. E. BARRALET, K. SPATZ, L. M. GROVER and R. THULL, Biomaterials 25 (2004) 2187.

    Article  CAS  ISI  Google Scholar 

  7. K. OHURA, P. HARDOUIN, J. LEMAITRE, G. PASQUIER and B FLAUTRE, J. Biomed. Mater. Res. 30 (1996) 193.

    Article  CAS  Google Scholar 

  8. W. E. BROWN and L. C. CHOW, Dental restorative cement pastes, in (US Pat. 4518430. 1985 USA).

  9. W. E. BROWN and L. C. CHOW, “Cement research progress”, (Proceeding of the American Ceramics Society 1986) 352.

  10. W. E. BROWN and L. C. CHOW, “Combinations of sparingly soluble calcium phosphates in cement slurries and pastes as remineralizers and cements”, in (US Pat. 461053, 1986).

  11. M. BOHNER, Int. J. Care Injured. 31 (2000) S-D37-4.

    Google Scholar 

  12. Idem., Eur Spine J. 10 (2001) S114.

    Google Scholar 

  13. J. LEMAITRE and A. MIRTCHI, A. Silicates Industries 10 (1987) 141.

    Google Scholar 

  14. G. VEREECKE and J. LEMAITRE, J. Crystal Growth 104 (1990) 820.

    CAS  Google Scholar 

  15. J. C. Elliott, in “Structure and Chemistry of the Apatites and Other Calcium Orthophosphates” (Elsevier Science B.V., 1994)

  16. K. J. LILLEY, U. GBURECK, J. C. KNOWLES, D. F. FARRAR and J. E. BARRALET, J. Mater Sci.: Mater. in Med. 16 (2005) 455.

    CAS  Google Scholar 

  17. K. J. LILLEY, A. J. WRIGHT, D. F. FARRAR, J. E. BARRALET, Key Engng Mater. 284–286 (2005) 137.

    Google Scholar 

  18. J. E. BARRALET, K. J. LILLEY, L. M. GROVER, D. F. FARRAR, C. ANSELL and U. GBURECK, J. Mater Sci.: Mater. Med. 15 (2003) 407.

    Google Scholar 

  19. K. ASAOKA and K. ISHIKAWA, J. Biomed. Mater. Res. 29 (1995) 1537.

    Google Scholar 

  20. S. TAKAGI, K. ISHIKAWA, L. C. CHOW and Y. ISHIKAWA, J. Mater. Sci. Mater. Med. 6 (1995) 528.

    Google Scholar 

  21. C. LIU and W. SHEN, J. Mater. Sci. Mater. Med. 8 (1997) 803.

    CAS  Google Scholar 

  22. M. JARCHO, R. L. SALSBURY, M. B. THOMAS and R. H. DOREMUS, J. Mater. Sci. 14 (1979) 142.

    Article  CAS  Google Scholar 

  23. American National Standards Institute/American Dental Association, J. Am. Dent. Assoc. 101 (1980) 660.

    Google Scholar 

  24. R. Z. LEGEROS, in “{Calcium Phosphates in Oral Biology and Medicine”} (Karger, Basel, 1991) p. 21

  25. E. MAVRAPOULOS, A. M. ROSSI, N. ROCHA, G. A. SOARES, J. C. MOREIRA and G. T. MOURE, Materials Characterization 50 (2003) 203.

    Google Scholar 

  26. A. D. WILSON and J. W. NICHOLSON, in “Acid-Base Cements Their Biomedical and Industrial Applications” (Cambridge University Press, Cambridge, 1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Barralet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lilley, K.J., Gbureck, U., Wright, A.J. et al. Cement from nanocrystalline hydroxyapatite: Effect of calcium phosphate ratio. J Mater Sci: Mater Med 16, 1185–1190 (2005). https://doi.org/10.1007/s10856-005-4727-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-005-4727-2

Keywords

Navigation