Skip to main content

Advertisement

Log in

Augmented photovoltaic and electrochemical performance of lanthanide (Ln3+ = Ce3+, Pr3+, and Nd3+) doped ZrO2 semiconductor material

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Synthesis of energy efficient materials is the integral step towards tackling global energy crises in the current era. Present work elucidates the synthesis, characterization, and energy related applications of the lanthanides tri-doped zirconium semiconductor system comprising of Ln3+ co-doped ZrO2 (Ln3+ = Ce3+, Pr3+, and Nd3+). Synthesis has been done by adopting 5% doping strategy following chemical co-precipitation route. Precursors and thin films have been characterized via UV–Vis, FT-IR, XRD, and FE-SEM analysis. This material possessed a bandgap energy ranging between 3.6 and 4 eV and Baddeleyite monoclinic phase with 60 nm crystallite size exhibiting P21/c space group with the Zr4+ bonded with seven O2− atoms leading to formation of pentagonal bipyramids of ZrO7. Thin films of Ln3+ co-doped ZrO2 were marked by profound smoothness and maximum surface coverage. The scaffolding performance of the of Ln3+ co-doped ZrO2 was investigated in cesium lead halide perovskite solar cell device, which excelled in gaining an efficiency of 14.1% with the 66% of fill factor. Synthesized material was also explored for electrical charge storage for supercapacitor application by decorating 80% of it on the nickel form current collector (area: 1 × 1 cm2 and thickness: ~0.7 mm). The specific capacitance of this material exceeded the conventionally used materials by reaching up to 350.6 F g−1 making it a potential electrode material with the stabilized electrochemical performance using 0.1 M NaCl as a supporting electrolyte. Impedance studies in this regard indicated faster reaction kinetics and lower smaller series resistance (Rs) of 1.9 Ω. Finally, this material was employed as a bifunctional electro-catalyst for oxygen and hydrogen evolution. With the lowest overpotential and Tafel slope values of 133 mV and 118.9 mV dec−1, the developed electro-catalyst expressed more affinity as an HER electro-catalyst with the Volmer–Heyrovský mechanistic pathway for hydrogen generation. Voltammteric, potentiometric, and amperometric electro-analyses exhibited the excellent durability and service life for 100 min inside 0.1 M alkaline electrolyte of the developed semiconductor material which can be commercialized after optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available on request.

Code availability

Not applicable.

References

  1. T. Zahra, K.S. Ahmad, C. Zequine, R. Gupta, A. Thomas, M.A. Malik, S. Iram, D. Ali, Biomimmetic ZrO2@PdO nanocompsites: fabrication, characterization, and water splitting potential exploration. J. Int. Energy Res. 46, 8516–8526 (2022). https://doi.org/10.1002/er.7736

    Article  CAS  Google Scholar 

  2. T. Zahra, K.S. Ahmad, C. Zequine, R.K. Gupta, A.G. Thomas, M.A. Malik, S.B. Jaffri, D. Ali, Electro-catalyst [ZrO2/ZnO/PdO]-NPs green functionalization: fabrication, characterization and water splitting potential assessment. J. Int. Hydrog. Energy 46, 19347–19362 (2021). https://doi.org/10.1016/j.ijhydene.2021.03.094

    Article  CAS  Google Scholar 

  3. H. Aydın, U. Kurtan, M. Demir, S. Karakuş, Synthesis and application of a self-standing zirconia-based carbon nanofiber in a supercapacitor. Energy Fuels 36, 2212–2219 (2022). https://doi.org/10.1021/acs.energyfuels.1c04208

    Article  CAS  Google Scholar 

  4. A. Ćirić, S. Stojadinović, The spectroscopic quality factor, phase, morphological, structural, and photoluminescent analysis of ZrO2: Nd3+ coatings created by Plasma electrolytic oxidation. J. Lum. 1, 119665 (2023). https://doi.org/10.1016/j.jlumin.2022.119665

    Article  CAS  Google Scholar 

  5. C. Salas-Juárez, S.E. Burruel-Ibarra, M.I. Gil-Tolano, A.P. Rodriguez, F. Romo-Garcia, A.R. Garcia-Haro, F. Brown, M. Yacaman-Valdez, J.L. Iriqui-Razcón, M. Martínez-Gil, R. Melendrez, Persistent luminescence of ZrO2: Tb3+ after beta particle irradiation for dosimetry applications. J. Lum. 16, 119712 (2023). https://doi.org/10.1016/j.jlumin.2023.119712

    Article  CAS  Google Scholar 

  6. S. Yilmaz, S. Cobaner, E. Yalaz, B. Amini Horri, Synthesis and characterization of gadolinium-doped zirconia as a potential electrolyte for solid oxide fuel cells. Energies 15, 2826 (2022). https://doi.org/10.3390/en15082826

    Article  CAS  Google Scholar 

  7. Y. Samantaray, D.J. Martin, R.G. Agarwal, N.J. Gibson, J.M. Mayer, Proton-coupled electron transfer of cerium oxide nanoparticle thin-film electrodes. J. Phys. Chem. C (2023). https://doi.org/10.1021/acs.jpcc.2c06783

    Article  Google Scholar 

  8. S.B. Jaffri, K.S. Ahmad, K.H. Thebo, F. Rehman, Recent developments in carbon nanotubes-based perovskite solar cells with boosted efficiency and stability. Zeit für Phys. Chem. 235, 1539–1572 (2021). https://doi.org/10.1515/zpch-2020-1729

    Article  CAS  Google Scholar 

  9. S.B. Jaffri, K.S. Ahmad, Interfacial engineering revolutionizers: perovskite nanocrystals and quantum dots accentuated performance enhancement in perovskite solar cells. Crit. Rev. Solid State Mater. Sci. 46, 251–279 (2021). https://doi.org/10.1080/10408436.2020.1758627

    Article  CAS  Google Scholar 

  10. S. Lee, J.Y. Kim, K.S. Hong, H.S. Jung, J.K. Lee, H. Shin, Enhancement of the photoelectric performance of dye-sensitized solar cells by using a CaCO3-coated TiO2 nanoparticle film as an electrode. Sol. Energy Mater. Sol. Cells 90, 2405–2412 (2006). https://doi.org/10.1016/j.solmat.2006.03.013

    Article  CAS  Google Scholar 

  11. A. Kulkarni, A.K. Jena, H.W. Chen, Y. Sanehira, M. Ikegami, T. Miyasaka, Revealing and reducing the possible recombination loss within TiO2 compact layer by incorporating MgO layer in perovskite solar cells. Sol. Energy 136, 379–384 (2016). https://doi.org/10.1016/j.solener.2016.07.019

    Article  CAS  Google Scholar 

  12. T.M. Abdel-Fattah, S. Ebrahim, K. Gasmalla, M. Soliman, The impacts of zirconia as a spacer layer on fill factor of hole-free perovskite solar cells. In Electrochemical Society Meeting Abstracts aimes. Electrochem. Soc. 59, 2159–2159 (2018). https://doi.org/10.1149/MA2018-02/59/2159

    Article  Google Scholar 

  13. M. Che, L. Zhu, Y.L. Zhao, D.S. Yao, X.Q. Gu, J. Song, Y.H. Qiang, Enhancing current density of perovskite solar cells using TiO2-ZrO2 composite scaffold layer. Mater. Sci. Semicond. Proc. 56, 29–36 (2016). https://doi.org/10.1016/j.mssp.2016.07.003

    Article  CAS  Google Scholar 

  14. Y. Zhao, J. Wei, H. Li, Y. Yan, W. Zhou, D. Yu, Q. Zhao, A polymer scaffold for self-healing perovskite solar cells. Nat. Commun. 7, 10228 (2016). https://doi.org/10.1038/ncomms10228

    Article  CAS  Google Scholar 

  15. I. Shaheen, K.S. Ahmad, S.B. Jaffri, D. Ali, Biomimetic [MoO3@ZnO] semiconducting nanocomposites: chemo-proportional fabrication, characterization and energy storage potential exploration. Renew. Energy 167, 568–579 (2021). https://doi.org/10.1016/j.renene.2020.11.115

    Article  CAS  Google Scholar 

  16. M.N. Ashiq, A. Aman, T. Alshahrani, M. Faisal Iqbal, A. Razzaq, M. Najam-Ul-Haq, A. Shah, J. Nisar, D. Tyagi, M. Fahad Ehsan, Enhanced electrochemical properties of silver-coated zirconia nanoparticles for supercapacitor application. J. Taibah Univ. Sci. 15, 10–16 (2021). https://doi.org/10.1080/16583655.2020.1867338

    Article  Google Scholar 

  17. Z. Pang, J. Duan, Y. Zhao, Q. Tang, B. He, L. Yu, A ceramic NiO/ZrO2 separator for high-temperature supercapacitor up to 140° C. J. Power Sources 400, 126–134 (2018). https://doi.org/10.1016/j.jpowsour.2018.08.008

    Article  CAS  Google Scholar 

  18. C.V. Reddy, R. Koutavarapu, J. Shim, B. Cheolho, K.R. Reddy, Novel g-C3N4/Cu-doped ZrO2 hybrid heterostructures for efficient photocatalytic Cr (VI) photoreduction and electrochemical energy storage applications. Chemosphere 295, 133851 (2022). https://doi.org/10.1016/j.chemosphere.2022.133851

    Article  CAS  Google Scholar 

  19. S. Srinivasan, C. Vivek, P. Sakthivel, G. Chamundeeswari, S.P. Bharathi, S. Amuthameena, B. Balraj, Synthesis of Ag incorporated ZrO2 nanomaterials for enhanced electrochemical energy storage applications. Inorg. Chem. Commun. 138, 109262 (2022). https://doi.org/10.1016/j.inoche.2022.109262

    Article  CAS  Google Scholar 

  20. I. Shaheen, I. Hussain, T. Zahra, R. Memon, A.A. Alothman, M. Ouladsmane, A. Qureshi, J.H. Niazi, Electrophoretic deposition of ZnO/CuO and ZnO/CuO/rGO heterostructure based film as environmental Benign flexible electrode for supercapacitor. Chemosphere 18, 138149 (2023). https://doi.org/10.1016/j.chemosphere.2023.138149

    Article  CAS  Google Scholar 

  21. N. Abbas, I. Shaheen, I. Ali, M. Ahmad, S.A. Khan, A. Qureshi, J.H. Niazi, M. Imran, C. Lamiel, M.Z. Ansari, I. Hussain, Effect of growth duration of Zn0.76Co0.24S interconnected nanosheets for high-performance flexible energy storage electrode materials. Ceram. Int. 48, 34251–34257 (2022). https://doi.org/10.1016/j.ceramint.2022.07.225

    Article  CAS  Google Scholar 

  22. S.M. Hassan, M.T. Siddique, M. Fakhar-e-Alam, M. Atif, A. Saifullah, N. Marwat, A. Khurshid, O. Noor, N. Hossain, S. Ahmad, K.S. Alimgeer, Hydrothermally synthesized lanthanide-incorporated multifunctional zirconia nanoparticles: potential candidate for multimodal imaging. J. King Saud Univ. Sci. 34, 102080 (2022). https://doi.org/10.1016/j.jksus.2022.102080

    Article  Google Scholar 

  23. M. Ijaz, Plasmonic hot electrons: Potential candidates for improved photocatalytic hydrogen production. J. Int. Hydrog. Energy (2022). https://doi.org/10.1016/j.ijhydene.2022.11.251

    Article  Google Scholar 

  24. T. Iqbal, A. Hassan, M. Ijaz, M. Salim, M. Farooq, M. Zafar, M.B. Tahir, Chromium incorporated copper vanadate nano-materials for hydrogen evolution by water splitting. Appl. Nanosci. 11, 1661–1671 (2021). https://doi.org/10.1007/s13204-021-01786-8

    Article  CAS  Google Scholar 

  25. M.B. Tahir, M. Sagir, S. Muhammad, S.M. Siddeeg, T. Iqbal, A.M. Asiri, M. Ijaz, Hierarchical WO3@BiVO4 nanostructures for improved green energy production. Appl. Nanosci. 10, 1183–1190 (2020). https://doi.org/10.1007/s13204-019-01180-5

    Article  CAS  Google Scholar 

  26. D. Strmcnik, P.P. Lopes, B. Genorio, V.R. Stamenkovic, N.M. Markovic, Design principles for hydrogen evolution reaction catalyst materials. Nano Energy 29, 29–36 (2016). https://doi.org/10.1016/j.nanoen.2016.04.017

    Article  CAS  Google Scholar 

  27. N. Han, K.R. Yang, Z. Lu, Y. Li, W. Xu, T. Gao, Z. Cai, Y. Zhang, V.S. Batista, W. Liu, X. Sun, Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid. Nat. Commun. 9, 924 (2018). https://doi.org/10.1038/s41467-018-03429-z

    Article  CAS  Google Scholar 

  28. H. Sun, X. Xu, Z. Yan, X. Chen, L. Jiao, F. Cheng, J. Chen, Superhydrophilic amorphous Co–B–P nanosheet electrocatalysts with Pt-like activity and durability for the hydrogen evolution reaction. J. Mater. Chem. A 6, 22062–22069 (2018). https://doi.org/10.1039/C8TA02999G

    Article  CAS  Google Scholar 

  29. V.S. Thoi, Y. Sun, J.R. Long, C.J. Chang, Complexes of earth-abundant metals for catalytic electrochemical hydrogen generation under aqueous conditions. Chem. Soc. Rev. 42, 2388–2400 (2013). https://doi.org/10.1039/C2CS35272A

    Article  CAS  Google Scholar 

  30. D. Bogachuk, J. Girard, S. Tilala, D. Martineau, S. Narbey, A. Verma, A. Hinsch, M. Kohlstädt, L. Wagner, Nanoarchitectonics in fully printed perovskite solar cells with carbon-based electrodes. Nanoscale 1, 1–10 (2023). https://doi.org/10.1039/D2NR05856A

    Article  Google Scholar 

  31. W. Jinxi, W. Aimin, A.K. Ghasemi, M.S. Lashkenari, E. Pashai, C. Karaman, D.E. Niculina, H. Karimi-Maleh, Tailoring of ZnFe2O4-ZrO2-based nanoarchitectures catalyst for supercapacitor electrode material and methanol oxidation reaction. Fuel 334, 126685 (2023). https://doi.org/10.1016/j.fuel.2022.126685

    Article  CAS  Google Scholar 

  32. M. Beke, T. Velempini, K. Pillay, Synthesis and application of NiO-ZrO2@ g-C3N4 nanocomposite for high-performance hybrid capacitive deionisation. Result Chem. 5, 100799 (2023). https://doi.org/10.1016/j.rechem.2023.100799

    Article  CAS  Google Scholar 

  33. C. Lee, K. Shin, Y. Park, Y.H. Yun, G. Doo, G.H. Jung, M. Kim, W.C. Cho, C.H. Kim, H.M. Lee, H.Y. Kim, Catalyst-support interactions in Zr2ON2-supported IrOx electrocatalysts to break the trade-off relationship between the activity and stability in the acidic oxygen evolution reaction. Adv. Func. Mater. 1, 2301557 (2023). https://doi.org/10.1002/adfm.202301557

    Article  CAS  Google Scholar 

  34. R. Palani, Y.S. Wu, S.H. Wu, R. Jose, C.C. Yang, Metal-organic framework-derived ZrO2/NiCo2O4/graphene mesoporous cake-like structure as enhanced bifunctional electrocatalytic cathodes for long life Li-O2 batteries. Electrochim. Acta 412, 140147 (2022). https://doi.org/10.1016/j.electacta.2022.140147

    Article  CAS  Google Scholar 

  35. Q. Mohsen, W.S. Al-Gethami, Z. Zaki, S.H. Alotaibi, M.M. Ibrahim, M. Ezzat, M.A. Amin, M.M. Kamel, N.Y. Mostafa, Effect of pH on hydrothermal synthesis of ZrO2 nanoparticles and their electrocatalytic activity for hydrogen production. Int. J. Electrochem. Sci. 17, 2 (2022). https://doi.org/10.20964/2022.07.24

    Article  CAS  Google Scholar 

  36. S. Xu, X. Tan, F. Liu, L. Zhang, Y. Huang, B.A. Goodman, W. Deng, Growth and optical properties of thulia-doped cubic yttria stabilized zirconia single crystals. Ceram. Int. 45, 15974–15979 (2019). https://doi.org/10.1016/j.ceramint.2019.05.106

    Article  CAS  Google Scholar 

  37. C. Dhandapani, R. Narayanasamy, S.N. Karthick, K.V. Hemalatha, S. Selvam, P. Hemalatha, S.D. Kirupha, H.J. Kim, Drastic photocatalytic degradation of methylene blue dye by neodymium doped zirconium oxide as photocatalyst under visible light irradiation. Optik 127, 10288–10296 (2016). https://doi.org/10.1016/j.ijleo.2016.08.048

    Article  CAS  Google Scholar 

  38. Y. Li, J. Wang, Z. Huang, C. Qian, Y. Tian, Y. Duan, An Eu-doped Zr-metal-organic framework for simultaneous detection and removal of antibiotic tetracycline. J. Environ. Chem. Eng. 9, 106012 (2021). https://doi.org/10.1016/j.jece.2021.106012

    Article  CAS  Google Scholar 

  39. Q. Yang, H. Hong, Y. Luo, Heterogeneous nucleation and synthesis of carbon dots hybrid Zr-based MOFs for simultaneous recognition and effective removal of tetracycline. J. Chem. Eng. 392, 123680 (2020). https://doi.org/10.1016/j.cej.2019.123680

    Article  CAS  Google Scholar 

  40. T. Zahra, K.S. Ahmad, C. Zequine, R. Gupta, M.A. Malik, J.H. Niazi, A. Qureshi, Bio-inspired NiO/ZrO2 mixed oxides (NZMO) for oxygen evolution reactions: from facile synthesis to electrochemical analysis. J. Chem. Technol. Biotechnol. 98, 296–305 (2023). https://doi.org/10.1002/jctb.7246

    Article  CAS  Google Scholar 

  41. B. Murali Babu, S. Vadivel, High performance humidity sensing properties of indium tin oxide (ITO) thin films by sol–gel spin coating method. J. Mater. Sci. 28, 2442–2447 (2017). https://doi.org/10.1007/s10854-016-5816-3

    Article  CAS  Google Scholar 

  42. M. Fang, A. Aristov, K.V. Rao, A.V. Kabashin, L. Belova, Particle-free inkjet printing of nanostructured porous indium tin oxide thin films. RSC Adv. 3, 19501–19507 (2013). https://doi.org/10.1039/C3RA40487K

    Article  CAS  Google Scholar 

  43. O. Dimitrov, I. Stambolova, T. Babeva, K. Lazarova, G. Avdeev, M. Shipochka, R. Mladenova, S. Simeonova, High intensity orange-red emission of chemically deposited Sm3+-doped ZrO2 thin films-beneficial effects of host and dopant. J. Mater. Res. Technol. 18, 3026–3034 (2022). https://doi.org/10.1016/j.jmrt.2022.04.013

    Article  CAS  Google Scholar 

  44. A. Ćirić, S. Stojadinović, Photoluminescence studies of ZrO2: Tm3+/Yb3+ coatings formed by plasma electrolytic oxidation. J. Lum. 214, 116568 (2019). https://doi.org/10.1016/j.jlumin.2019.116568

    Article  CAS  Google Scholar 

  45. A. Ćirić, S. Stojadinović, Photoluminescence of ZrO2: Gd3+ and ZrO2: Dy3+ coatings formed by the plasma electrolytic oxidation. J. Alloys Compds. 832, 154907 (2020). https://doi.org/10.1016/j.jallcom.2020.154907

    Article  CAS  Google Scholar 

  46. A. Zafar, K.S. Ahmad, S.B. Jaffri, M. Sohail, Physical vapor deposition of SnS: PbS-dithiocarbamate chalcogenide semiconductor thin films: elucidation of optoelectronic and electrochemical features. Phosphorus Sulfur Silicon Relat Elem 196, 36–46 (2020). https://doi.org/10.1080/10426507.2020.1799371

    Article  CAS  Google Scholar 

  47. H. Siraj, K.S. Ahmad, S.B. Jaffri, M. Sohail, Synthesis, characterization and electrochemical investigation of physical vapor deposited barium sulphide doped iron sulphide dithiocarbamate thin films. Microelectron. Eng. 233, 111400 (2020). https://doi.org/10.1016/j.mee.2020.111400

    Article  CAS  Google Scholar 

  48. K.S. Ahmad, S.N. Naqvi, S.B. Jaffri, Systematic review elucidating the generations and classifications of solar cells contributing towards environmental sustainability integration. Rev. Inorg. Chem. 41, 21–39 (2021). https://doi.org/10.1515/revic-2020-0009

    Article  CAS  Google Scholar 

  49. S.B. Jaffri, K.S. Ahmad, Newfangled progressions in the charge transport layers impacting the stability and efficiency of perovskite solar cells. Rev. Inorg. Chem. 42, 137–159 (2022). https://doi.org/10.1515/revic-2021-0004

    Article  CAS  Google Scholar 

  50. M.F. Vildanova, A.B. Nikolskaia, S.S. Kozlov, O.I. Shevaleevskiy, O.V. Almjasheva, V.V. Gusarov, Group IV oxides for perovskite solar cells. Doklady Phys. Chem. 496, 13–19 (2021). https://doi.org/10.1134/S0012501621020020

    Article  CAS  Google Scholar 

  51. Y. Li, L. Zhao, S. Wei, M. Xiao, B. Dong, L. Wan, S. Wang, Effect of ZrO2 film thickness on the photoelectric properties of mixed-cation perovskite solar cells. Appl. Surf. Sci. 439, 506–515 (2018). https://doi.org/10.1016/j.apsusc.2018.01.005

    Article  CAS  Google Scholar 

  52. Z. Meng, D. Guo, J. Yu, K. Fan, Investigation of Al2O3 and ZrO2 spacer layers for fully printable and hole-conductor-free mesoscopic perovskite solar cells. Appl. Surf. Sci. 430, 632–638 (2018). https://doi.org/10.1016/j.apsusc.2017.05.018

    Article  CAS  Google Scholar 

  53. J.W. Lee, S.G. Kim, S.H. Bae, D.K. Lee, O. Lin, Y. Yang, N.G. Park, The interplay between trap density and hysteresis in planar heterojunction perovskite solar cells. Nano Lett. 17, 4270–4276 (2017). https://doi.org/10.1021/acs.nanolett.7b01211

    Article  CAS  Google Scholar 

  54. C.H. Hsu, K.T. Chen, L.Y. Lin, W.Y. Wu, L.S. Liang, P. Gao, Y. Qiu, X.Y. Zhang, P.H. Huang, S.Y. Lien, W.Z. Zhu, Tantalum-doped TiO2 prepared by atomic layer deposition and its application in perovskite solar cells. Nanomaterials 11, 1504 (2021). https://doi.org/10.3390/nano11061504

    Article  CAS  Google Scholar 

  55. D.P. Shoemaker, S.A. Corr, R. Seshadri, Porosity through reduction in metal oxides. MRS Online Proc. Lib. 1148, 1–8 (2008). https://doi.org/10.1557/PROC-1148-PP10-01

    Article  Google Scholar 

  56. J. Anupriya, N. Karuppusamy, T.W. Chen, S.M. Chen, K. Balamurugan, M. Akilarasan, X. Liu, J. Yu, Enhancing catalytic activity through the construction of praseodymium tungstate decorated on hierarchical three-dimensional porous biocarbon for determination of furazolidone in aquatic samples. Chemosphere 313, 137553 (2023). https://doi.org/10.1016/j.chemosphere.2022.137553

    Article  CAS  Google Scholar 

  57. W. Zhang, Y. Tan, Y. Gao, J. Wu, B. Tang, Ultrafine nano zirconia as electrochemical pseudocapacitor material. Ceram. Int. 41, 2626–2630 (2015). https://doi.org/10.1016/j.ceramint.2014.10.047

    Article  CAS  Google Scholar 

  58. Y.S. Sung, L.Y. Lin, Improving energy storage ability of Universitetet i Oslo-66 as active material of supercapacitor using carbonization and acid treatment. J. Energy Storage 37, 102480 (2021). https://doi.org/10.1016/j.est.2021.102480

    Article  Google Scholar 

  59. A.S. Yasin, I.M. Mohamed, M.T. Amen, N.A. Barakat, C.H. Park, C.S. Kim, Incorporating zirconia nanoparticles into activated carbon as electrode material for capacitive deionization. J. Alloys Compds. 772, 1079–1087 (2019). https://doi.org/10.1016/j.jallcom.2018.09.057

    Article  CAS  Google Scholar 

  60. Z. Chang, S. Li, L. Sun, C. Ding, X. An, X. Qian, based electrode comprising zirconium phenylphosphonate modified cellulose fibers and porous polyaniline. Cellulose 26, 6739–6754 (2019). https://doi.org/10.1007/s10570-019-02523-9

    Article  CAS  Google Scholar 

  61. Y. Wang, Y. Lu, Z. Hu, J. Sun, G. Xiao, H. Zhao, J. Zhu, Z. Liu, Facile preparation of Zr@carbon electrodes based on polyimide/UiO-66 composites for supercapacitors. Electrochem. Commun. (2023). https://doi.org/10.1016/j.elecom.2023.107449

    Article  Google Scholar 

  62. A.P. Alves, R. Koizumi, A. Samanta, L.D. Machado, A.K. Singh, D.S. Galvao, G.G. Silva, C.S. Tiwary, P.M. Ajayan, One-step electrodeposited 3D-ternary composite of zirconia nanoparticles, rGO and polypyrrole with enhanced supercapacitor performance. Nano Energy 31, 225–232 (2017). https://doi.org/10.1016/j.nanoen.2016.11.018

    Article  CAS  Google Scholar 

  63. B. Mete, N.S. Peighambardoust, S. Aydin, E. Sadeghi, U. Aydemir, Metal-substituted zirconium diboride (Zr1-xTMxB2; TM= Ni Co, and Fe) as low-cost and high-performance bifunctional electrocatalyst for water splitting. Electrochim. Acta 389, 138789 (2021). https://doi.org/10.1016/j.electacta.2021.138789

    Article  CAS  Google Scholar 

  64. T. Zahra, K.S. Ahmad, Functionalization of Mn2O3/PdO/ZnO electrocatalyst using organic template with accentuated electrochemical potential toward water splitting. J. Int. Energy Res. 46, 452–63 (2022). https://doi.org/10.1002/er.6677

    Article  CAS  Google Scholar 

  65. M.M. Gul, K.S. Ahmad, E-beam-deposited Zr2NiS4-GO alloy thin film, a tenacious photocatalyst and efficient electrode for electrical devices. J. Mater. Sci. 57, 7290–7309 (2022). https://doi.org/10.1007/s10853-022-07131-w

    Article  CAS  Google Scholar 

  66. B. Sukhbaatar, S. Yoon, B. Yoo, Simple synthesis of a CoO nanoparticle-decorated nitrogen-doped carbon catalyst from spent coffee grounds for alkaline hydrogen evolution. J. Mater. Sci. 57, 18075–21888 (2022). https://doi.org/10.1007/s10853-022-07436-w

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work was supported by Researchers Supporting Project number (RSP2023R100), King Saud University, Riyadh, Saudi Arabia. Authors of this work are highly grateful to the Department of Environmental Sciences, Fatima Jinnah Women University, The Mall, 46000, Rawalpindi, Pakistan, and the Queen Mary University of London, the United Kingdom for providing the technical facilities needed for the completion of this work. Also, the authors want to acknowledge the Higher Education Commission, Pakistan. The concept, idea, and writing of this work are the intellectual property right of Materials and Environmental Chemistry Lab, Lab E-21, Department of Environmental Sciences, Fatima Jinnah Women University, The Mall, 46000, Rawalpindi, Pakistan.

Funding

This research work was supported by Researchers Supporting Project number (RSP2023R100), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

SBJ: Conceptualization, methodology, visualization, data curation, and writing—original draft; KSA: Conceptualization, methodology, supervision, and writing—review & editing; IA: Conceptualization, methodology, supervision, data curation, resources, and writing—review & editing; SMI: resources, and review and editing.

Corresponding author

Correspondence to Khuram Shahzad Ahmad.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaffri, S.B., Ahmad, K.S., Abrahams, I. et al. Augmented photovoltaic and electrochemical performance of lanthanide (Ln3+ = Ce3+, Pr3+, and Nd3+) doped ZrO2 semiconductor material. J Mater Sci: Mater Electron 34, 1376 (2023). https://doi.org/10.1007/s10854-023-10811-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10811-1

Navigation