Skip to main content

Advertisement

Log in

Rational design of hierarchical Ni(OH)2–MnO2 nanoflowers @Ti3C2Tx nanosheets heterostructure as advanced symmetric supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

MXenes, as a two-dimensional transition metal carbide or nitride based electrode material with excellent performance, shows excellent performance similar to graphene, which is considered as an ideal electrode material for supercapacitors. However, the application of two-dimensional lamellar Ti3C2Tx is limited by its low theoretical specific capacity and easy agglomeration between layers. Herein, through a simple hydrothermal synthesis strategy, we introduced three-dimensional (3D) Ni (OH)2–MnO2 nanoflowers between layered Ti3C2Tx sheets to form a unique 3D hierarchical pillared structure, which not only solves the problem of easy agglomeration between Ti3C2Tx layers, but also gives play to the advantage of Ni(OH)2 and MnO2 as the high specific capacitance of metal compounds, and this composite obtained shows the synergistic effect between components. In addition, due to its three-dimensional structure, Ni(OH)2–MnO2 nanoflowers can effectively hinder the accumulation of Ti3C2Tx nanosheets, thereby increasing their active electrochemical degree points and promoting the transport of electrolytes. Furthermore, the three-dimensional pillared Ni(OH)2–MnO2@Ti3C2Tx composite we prepared displays a large specific capacitance of 2523 F g−1 at 2 mV s−1. At the high current density of 10 A g−1, after 10,000 cycles, the electrode material finally maintained 88.1% of the initial specific capacitance, which proved its remarkable cycle stability. Moreover, the energy density and power density of the symmetrical supercapacitor (SSC) made of this composite materials are 36.3 Wh kg−1 and 421.5 W kg−1, respectively. All above results indicate that the easy preparation method, low cost, Ni(OH)2–MnO2@Ti3C2Tx composites with excellent performance will be suitable for different application scenarios of multifunctional and digital supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. X. Li, J. Zhang, B. Liu et al., A critical review on the application and recent developments of post-modified biochar in supercapacitors. J. Clean. Prod. 310, 127428 (2021)

    Article  CAS  Google Scholar 

  2. Y. Yan, Q. Cheng, G. Wang et al., Growth of polyaniline nanowhiskers on mesoporous carbon for supercapacitor application. J. Power Sources 196(18), 7835–7840 (2011)

    Article  CAS  Google Scholar 

  3. D. Ghosh, C.K. Das et al., Hydrothermal growth of hierarchical Ni3S2 and Co3S4 on a reduced graphene oxide hydrogel@Ni foam: a high-energy-density aqueous asymmetric supercapacitor. Acs Appl. Mater. Interfaces 7(2), 1122–1131 (2015)

    Article  CAS  Google Scholar 

  4. L. Zhao, X.B. Ma, S. Huang et al., One-pot synthesis of Fe2O3 nanoparticles on nitrogen-doped graphene as advanced supercapacitor electrode materials. J. Phys. Chem. C 118(31), 17231–17239 (2014)

    Article  Google Scholar 

  5. Y. Wu, G. Gao, H. Yang et al., Controlled synthesis of V2O5/MWCNT core/shell hybrid aerogels through a mixed growth and self-assembly methodology for supercapacitors with high capacitance and ultralong cycle life. J. Mater. Chem. A 3, 15692–15699 (2015)

    Article  CAS  Google Scholar 

  6. W. Bi, G. Gao, Y. Wu et al., Novel three-dimensional island-chain structured V2O5/graphene/MWCNT hybrid aerogels for supercapacitors with ultralong cycle life. RSC Adv. 7, 7179–7187 (2017)

    Article  CAS  Google Scholar 

  7. X.Y. Yang, C.L. Xiang, Y.J. Zou et al., Low-temperature synthesis of sea urchin-like Co-Ni oxide on graphene oxide for supercapacitor electrodes. J. Mater. Sci. Technol. 55, 223–230 (2020)

    Article  CAS  Google Scholar 

  8. X.Q. Mao, Y.J. Zou, F. Xu et al., Three-dimensional self-supporting Ti3C2 with MoS2 and Cu2O nanocrystals for high-performance flexible supercapacitors. ACS Appl. Mater. Interface 13, 22664–22675 (2021)

    Article  CAS  Google Scholar 

  9. H. Cheng, A.D. Su, S. Li et al., Facile synthesis and advanced performance of Ni(OH)2/CNTs nanoflake composites on supercapacitor applications. Chem. Phys. Lett. 601, 168–173 (2014)

    Article  CAS  Google Scholar 

  10. W. Wu, C. Zhao, D. Niu et al., Ultrathin N-doped Ti3C2-MXene decorated with NiCo2S4 nanosheets as advanced electrodes for supercapacitors. Appl. Surf. Sci. 539, 148272 (2021)

    Article  CAS  Google Scholar 

  11. Y. Zhang, X. Xu, Machine learning band gaps of doped-TiO2 photocatalysts from structural and morphological parameters. ACS Omega 5(25), 15344–15352 (2020)

    Article  CAS  Google Scholar 

  12. Y. Zhang, X. Xu, Machine learning optical band gaps of doped-ZnO films. Optik 217, 164808 (2020)

    Article  CAS  Google Scholar 

  13. Y. Zhang, X. Xu, Machine learning lattice constants for cubic perovskite A22+BB′O6 compounds. CrystEngComm 22, 6385–6397 (2020)

    Article  CAS  Google Scholar 

  14. Y. Zhang, X. Xu, Machine learning properties of electrolyte additives: a focus on redox potentials. Ind. Eng. Chem. Res. 60(1), 343–354 (2021)

    Article  CAS  Google Scholar 

  15. Y. Zhang, X. Xu, Lattice misfit predictions via the gaussian process regression for Ni-based single crystal superalloys. Met. Mater. Int. 27, 235–253 (2021)

    Article  Google Scholar 

  16. N. Li, Y. Zhang, M. Jia et al., 1T/2H MoSe2-on-MXene heterostructure as bifunctional electrocatalyst for efficient overall water splitting. Electrochim. Acta 326, 134976 (2019)

    Article  CAS  Google Scholar 

  17. W. Wu, C. Wang, C. Zhao et al., Rational design of hierarchical FeCo2O4 nanosheets@NiO nanowhiskers core-shell heterostructure as binder-free electrodes for efficient pseudocapacitors. Electrochim. Acta 370, 137789 (2021)

    Article  CAS  Google Scholar 

  18. S.C. Sekhar, G. Nagaraju, J.S. Yu, High-performance pouch-type hybrid supercapacitor based on hierarchical NiO-Co3O4-NiO composite nanoarchitectures as an advanced electrode material. Nano Energy 48, 81–92 (2018)

    Article  Google Scholar 

  19. J.G. Kim, H.C. Kim, N.D. Kim, M.S. Khil, N-doped hierarchical porous hollow carbon nanofibers based on PAN/PVP@SAN structure for high performance supercapacitor. Composites B 186, 107825 (2020)

    Article  CAS  Google Scholar 

  20. V.H. Luan, J.H. Han, H.W. Kang, W. Lee, Highly porous and capacitive copper oxide nanowire/graphene hybrid carbon nanostructure for high-performance supercapacitor electrodes. Composites Part B 178, 107464 (2019)

    Article  CAS  Google Scholar 

  21. H.M. Jiang, Z.G. Wang, Q. Yang et al., A novel MnO2/Ti3C2Tx MXene nanocomposite as high performance electrode materials for flexible supercapacitors. Electrochim. Acta 290, 695–703 (2018)

    Article  CAS  Google Scholar 

  22. L.P. Hu, N. Wu, J. Zheng et al., Preparation of a magnetic metal organic framework composite and its application for the detection of methyl parathion. Anal. Sci. Int. J. Jpn. Soc. Anal. Chem. 30(6), 663–668 (2014)

    Article  CAS  Google Scholar 

  23. Y.M. Hu, M.C. Liu, Q. Yang et al., Facile synthesis of high electrical conductive CoP via solid-state synthetic routes for supercapacitors. J. Energy Chem. 26(1), 49–55 (2017)

    Article  Google Scholar 

  24. C. Guo, Y.H. Tang, E.L. Zhang et al., Aggregation of self-assembled Ni(OH)2 nanosheets under hydrothermal conditions. J. Mater. Sci. 20(11), 1118–1122 (2009)

    CAS  Google Scholar 

  25. X. Liang, Q. Pang, C. Hart et al., A highly effificient polysulfifide mediator for lithium–sulfur batteries. Nat. Commun. 6, 5682 (2015)

    Article  Google Scholar 

  26. W. Yang, Y. Zhu, F. You et al., Insights into the surface-defect dependence of molecular oxygen activation over birnessite-type MnO2. Appl. Catal. B 223, 184–193 (2018)

    Article  Google Scholar 

  27. L. Zhu, J. Lv, X. Yu et al., Further construction of MnO2 composite through in-situ growth on MXene surface modified by carbon coating with outstanding catalytic properties on thermal decomposition of ammonium perchlorate. Appl. Surf. Sci. 502, 144171.1-144171.7 (2020)

    Article  Google Scholar 

  28. W. Wu, C. Wang, C. Zhao et al., Facile strategy of hollow polyaniline nanotubes supported on Ti3C2-MXene nanosheets for high-performance symmetric supercapacitors. J. Colloid Interface Sci. 580, 601–613 (2020)

    Article  CAS  Google Scholar 

  29. B.A. Prakasam, M. Lahtinen, M. Muruganandham et al., Synthesis of self-assembled α-GaOOH microrods and 3D hierarchical architectures with flower like morphology and their conversion to α-Ga2O3. Mater. Lett. 158, 370–372 (2015)

    Article  Google Scholar 

  30. H. Chen, S. Zhou, L. Wu, Porous nickel hydroxide-manganese dioxide-reduced graphene oxide ternary hybrid spheres as excellent supercapacitor electrode materials. ACS Appl. Mater. Interfaces. 6(11), 8621–8630 (2014)

    Article  CAS  Google Scholar 

  31. H.A.C. Gon Denier van der, P.M.V. Bodegom, S. Houweling et al., Combining upscaling and downscaling of methane emissions from rice fields: methodologies and preliminary results. Nutr. Cycl. Agroecosyst. 58(1–3), 285–301 (2000)

  32. B. Wwa, A. Cz, A. Cw et al., Hierarchical structure of self-supported NiCo2S4 nanosheets as high rate-capability and cycling-stability electrodes for advanced supercapacitor. Appl. Surf. Sci. 563, 150324 (2021)

    Article  Google Scholar 

  33. F. Shao, S. Li, Y. Xu et al., Molten salt strategy and plasma technology induced MnO2 with oxygen vacancy for high performance Zn-ion batteries. New J. Chem. 45(47), 22202–22207 (2021)

    Article  CAS  Google Scholar 

  34. R. Ramachandran, Y. Lan, Z. Xu et al., Construction of NiCo-layered double hydroxide microspheres from Ni-MOFs for high-performance asymmetric supercapacitors. ACS Appl. Energy Mater. 3, 6633–6643 (2020)

    Article  CAS  Google Scholar 

  35. X. Zhao, H. Xu, Z. Hui et al., Electrostatically Assembling 2D nanosheets of MXene and MOF-derivatives into 3D hollow frameworks for enhanced lithium storage. Small 15(47), 1904255 (2019)

    Article  CAS  Google Scholar 

  36. X. Zhou, M. Li, T. Li et al., Self-assembled 3D flower-like Ni(OH)2 nanostructures and their Ni–Zn cell applications. J. Appl. Electrochem. 50(12), 1–12 (2020)

    Article  Google Scholar 

  37. M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Nature 516, 78–81 (2014)

    Article  CAS  Google Scholar 

  38. W. Guo, C. Yu, S. Li et al., Strategies and insights towards the intrinsic capacitive properties of MnO2 for supercapacitors: challenges and perspectives. Nano Energy 459–472, 2211–2855 (2019)

    Google Scholar 

  39. S. Chen, Y. Xiang, W. Xu et al., A novel MnO2/MXene composite prepared by electrostatic self-assembly and its use as an electrode for enhanced supercapacitive performance. Inorg. Chem. Front. 6(1), 199–208 (2019)

    Article  CAS  Google Scholar 

  40. Hu. Bingling, X. Qin, A.M. Asiri, Fabrication of Ni(OH)2 nanoflakes array on Ni foam as a binder-free electrode material for high performance supercapacitors. Electrochim. Acta 339–342, 0013–4686 (2013)

    Google Scholar 

  41. H. Zhang, X. Zhang, D. Zhang, X. Sun, H. Lin, C. Wang, One-step electrophoretic deposition of reduced graphene oxide and Ni(OH)2 composite films for controlled syntheses supercapacitor electrodes. Phys. Chem. B 117, 1616–1627 (2012)

    Article  Google Scholar 

  42. R. Qu, S. Tang, X. Qin, J. Yuan, Y. Deng, L. Wu, J. Li, Z. Wei, Expanded graphite supported Ni(OH)2 composites for high performance supercapacitors. J. Alloy Compds. 728, 222–230 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51803113 and 51972200), the Science and Technology Foundation of Shaanxi Province (Grant No. 2018JQ5075), the Scientific Research Starting Foundation of Shaanxi University of Science and Technology (Grant No. 2016GBJ-10), and China Postdoctoral Science Foundation (Grant No. 2019M653611).

Funding

Funding was provided by National Natural Science Foundation of China (Grant nos. 51803113, 51972200).

Author information

Authors and Affiliations

Authors

Contributions

WW: Investigation, Validation, Funding acquisition, Formal analysis. TL: Conceptualization, Methodology, Software, Writing—original draft, Writing—review & editing, Visualization. XZ: Methodology. CZ: Methodology. DY: Methodology. YF: Methodology. JD: Methodology. LW: Methodology. JZ: Resources, Supervision.

Corresponding author

Correspondence to Wenling Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Liu, T., Zhang, X. et al. Rational design of hierarchical Ni(OH)2–MnO2 nanoflowers @Ti3C2Tx nanosheets heterostructure as advanced symmetric supercapacitors. J Mater Sci: Mater Electron 34, 855 (2023). https://doi.org/10.1007/s10854-023-10202-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10202-6

Navigation