Skip to main content
Log in

Hydrothermal synthesis, characterization, electrochemical, and optical properties of 2D sheet-like CuO nanostructures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present paper describes the structural, electrochemical, and optical properties of two-dimensional copper oxide nanosheets of length around 1 μm and thickness of 30 nm. The hydrothermal process was used to prepare the CuO nanosheets using copper nitrate trihydrate as an inorganic precursor and cetyltrimethylammonium bromide (CTAB), which acts as a structure-directing template. Serial physicochemical techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (IR), UV–visible diffuse reflectance spectra (DRS), and room-temperature photoluminescence (RTPL) were used to characterize the as-prepared samples. The structural results obtained from (XRD) confirm the monoclinic crystal structure CuO nanoelectrode, the phase purity, and the nanoscale character of the product. The CuO nanosheets have a higher band gap of 2.21 eV than bulk CuO, owing to the quantum confinement effect. The nanoscale characters could explain electrochemical performances, the nanosheet’s thickness, which can favor the easy electrons transfer and the high specific surface arising from the two-dimensional layers. The electrochemical properties of the CuO nanoelectrode showed reversible redox activity with charge–discharge cycling, which corresponded to the reversible lithium (Li) intercalation/deintercalation process. The results indicate that copper oxide nanosheet is promising for applications as an electrode material for a lithium-ion battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from Fatma Janene on reasonable request.

References

  1. S. Chae, S.H. Choi, N. Kim, J. Sung, J. Cho, Integration of graphite and silicon anodes for the commercialization of high-energy lithium-ion batteries. Angew. Chem. Int. Ed. 59, 110–135 (2020). https://doi.org/10.1002/anie.201902085

    Article  CAS  Google Scholar 

  2. R. Schmuch, R. Wagner, G. Hörpel, T. Placke, M. Winter, Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3, 267–278 (2018). https://doi.org/10.1038/s41560-018-0107-2

    Article  CAS  Google Scholar 

  3. Z. Liu, Q. Yu, Y. Zhao, R. He, M. Xu, S. Feng, S. Li, L. Zhou, L. Mai, Silicon oxides: a promising family of anode materials for lithium-ion batteries. Chem. Soc. Rev. 48, 285–309 (2019). https://doi.org/10.1039/C8CS00441B

    Article  CAS  Google Scholar 

  4. Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, S. Yang, CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and application. Prog. Mater. Sci. 60, 208–237 (2014). https://doi.org/10.1016/j.pmatsci.2013.09.003

    Article  CAS  Google Scholar 

  5. X. Hu, C. Li, X. Lou, Q. Yang, B. Hu, Hierarchical CuO octahedra inherited from copper metal-organic frameworks: high-rate and high-capacity lithium-ion storage materials stimulated by pseudocapacitance. J. Mater. Chem. A 5, 12828–12837 (2017). https://doi.org/10.1039/C7TA02953E

    Article  CAS  Google Scholar 

  6. J. Deng, L. Chen, Y. Sun, M. Ma, L. Fu, Interconnected MnO2 nanoflakes assembled on graphene foam as a binder-free and long-cycle lithium battery anode. Carbon 92, 177–185 (2015). https://doi.org/10.1016/j.carbon.2015.04.021

    Article  CAS  Google Scholar 

  7. Y. Wang, L. Yang, R. Hu, W. Sun, J. Liu, L. Ouyang, B. Yuan, H. Wang, M. Zhu, A stable and high-capacity anode for the lithium-ion battery: Fe2O3 wrapped by few-layered graphene. J. Power Source 288, 314–319 (2015). https://doi.org/10.1016/j.jpowsour.2015.04.076

    Article  CAS  Google Scholar 

  8. C. Yan, G. Chen, X. Zhou, J. Sun, C. Lv, Template-based engineering of carbon-doped CO3O4 hollow nanofibers as anode materials for lithium-ion batteries. Adv. Funct. Mater. 26, 1428–1436 (2016). https://doi.org/10.1002/adfm.201504695

    Article  CAS  Google Scholar 

  9. X. Wang, D.M. Tang, H. Li, W. Yi, T. Zhai, Y. Bando, D. Golberg, Revealing the conversion mechanism of CuO nanowires during lithiation-delithiation by in situ transmission electron microscopy. Chem. Commun. 48, 4812–4814 (2012). https://doi.org/10.1039/C2CC30643C

    Article  CAS  Google Scholar 

  10. A. Li, R. He, Z. Bian, H. Song, X. Chen, J. Zhou, Enhanced lithium storage performance of hierarchical CuO nanomaterials with surface fractal characteristics. Appl. Surf. Sci. 443, 382–388 (2018). https://doi.org/10.1016/j.apsusc.2018.03.019

    Article  CAS  Google Scholar 

  11. S. He, J. Li, J. Wang, G. Yang, Z. Qiao, Facile synthesis and lithium storage performance of hollow CuO microspheres. Mater. Lett. 129, 5–7 (2014). https://doi.org/10.1016/j.matlet.2014.05.034i

    Article  CAS  Google Scholar 

  12. X.P. Gao, J.L. Bao, G.L. Pan, H.Y. Zhu, P.X. Huang, F. Wu, D.Y. Song, Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li-ion battery. J. Phys. Chem. B 108, 5547–5551 (2004). https://doi.org/10.1021/jp037075k

    Article  CAS  Google Scholar 

  13. L.B. Chen, N. Lu, C.M. Xu, H.C. Yu, T.H. Wang, Electrochemical performance of polycrystalline CuO nanowires as anode material for Li-ion batteries. Electrochim. Acta 54, 4198–4201 (2009). https://doi.org/10.1016/j.electacta.2009.02.065

    Article  CAS  Google Scholar 

  14. F.S. Ke, L. Huang, G.Z. Wei, L.J. Xue, J.T. Li, B. Zhang, S.R. Chen, X.Y. Fang, S.G. Sun, One-step fabrication of CuO nanoribbons array electrode and its excellent lithium storage performance. Electrochim. Acta 54, 5825–5829 (2009). https://doi.org/10.1016/j.electacta.2009.05.038

    Article  CAS  Google Scholar 

  15. Y. Hu, X. Huang, K. Wang, J. Liu, J. Jiang, R. Ding, X. Ji, X. Li, Kirkendall-effect-based growth of dendrite-shaped CuO hollow micro/nanostructures for lithium-ion battery anodes. J. solid State Chem. 183, 662–667 (2010). https://doi.org/10.1016/j.jssc.2010.01.013

    Article  CAS  Google Scholar 

  16. J.Y. Xiang, J.P. Tu, L. Zhang, Y. Zhou, X.L. Wang, S.J. Shi, Simple synthesis of surface-modified hierarchical copper oxide spheres with needle-like morphology as anode for lithium-ion batteries. Electrochim. Acta 55, 1820–1824 (2010). https://doi.org/10.1016/j.electacta.2009.10.073

    Article  CAS  Google Scholar 

  17. Z. Deng, Z. Ma, Y. Li, Y. Li, L. Chen, X. Yang, H.E. Wang, B.L. Su, Boosting lithium-ion storage capability in CuO nanosheets via synergistic engineering of defects and pores. Front. Chem. 6, 428 (2018). https://doi.org/10.3389/fchem.2018.00428

    Article  CAS  Google Scholar 

  18. A. Tekgül, M. Alper, H. Kockar, Simple electrodepositing of CoFe/Cu multilayers: Effect of ferromagnetic layer thicknesses. J. Magn. Magn. Mater. 421, 472–476 (2017). https://doi.org/10.1016/j.jmmm.2016.06.039

    Article  CAS  Google Scholar 

  19. T. Pandiyarajan, R. Udayabhaskar, S. Vignesh, R.A. James, B. Karthikeyan, Synthesis and concentration-dependent antibacterial activities of CuO nanoflakes. Mater. Sci. Eng. C 33, 2020–2024 (2013). https://doi.org/10.1016/j.msec.2013.01.021

    Article  CAS  Google Scholar 

  20. D.P. Dubal, G.S. Gund, R. Holze, C.D. Lokhande, Mild chemical strategy to grow micro-roses and micro-woolen-like arranged CuO nanosheets for high-performance supercapacitors. J Power Sources 242, 687–698 (2013). https://doi.org/10.1016/j.jpowsour.2013.05.013

    Article  CAS  Google Scholar 

  21. A.K. Mishra, A.K. Nayak, A.K. Das, D. Pradhan, Microwave-assisted solvothermal synthesis of cupric oxide nanostructures for high-performance supercapacitor. J. Phys. Chem. C 122, 11249–11261 (2018). https://doi.org/10.1021/acs.jpcc.8b02210

    Article  CAS  Google Scholar 

  22. A. Ghosh, M. Miah, A. Bera, S.K. Saha, B. Ghosh, Synthesis of freestanding 2D CuO nanosheets at room temperature through a simple surfactant-free co-precipitation process and its application as electrode material in supercapacitors. J Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2020.158549

    Article  Google Scholar 

  23. S. Bhuvaneshwari, N. Gopalakrishnan, Hydrothermally synthesized copper oxide (CuO) superstructures for ammonia sensing. J. Colloid Interface Sci. 480, 76–84 (2016). https://doi.org/10.1016/j.jcis.2016.07.004

    Article  CAS  Google Scholar 

  24. A. Umar, A.A. Ibrahim, U.T. Nakate, H. Albargi, M.A. Alsaiari, F. Ahmed, F.A. Alharthi, A.A. Alghamdi, N. Al-Zaqri, Fabrication and characterization of CuO nanoplates based sensor device for ethanol gas sensing application Chem. Phys. Lett. (2021). https://doi.org/10.1016/j.cplett.2020.138204

    Article  Google Scholar 

  25. J. Zhao, R. Liu, Z. Hua, Hydrothermal synthesis and optical properties of single-crystalline CuO nanosheets. Superlattices Microstruct. 81, 243–247 (2015). https://doi.org/10.1016/j.spmi.2015.01.017

    Article  CAS  Google Scholar 

  26. F. Teng, W. Yao, Y. Zheng, Y. Ma, Y. Teng, T. Xu, S. Liang, Y. Zhu, Synthesis of flower-like CuO nanostructures as a sensitive sensor for catalysis. Sens. Actuators B chem. 134, 761–768 (2008). https://doi.org/10.1016/j.snb.2008.06.023

    Article  CAS  Google Scholar 

  27. S. Sonia, S. Poongodi, P.S. Kumar, D. Mangalaraj, N. Ponpandian, C. Viswanathan, Hydrothermal synthesis of highly stable CuO nanostructures for efficient photocatalytic degradation of organic dyes. Mater. Sci. Semicond. Process 30, 585–591 (2015). https://doi.org/10.1016/j.mssp.2014.10.012

    Article  CAS  Google Scholar 

  28. U.T. Nakate, G.H. Lee, R. Ahmad, P. Patil, Y.B. Hahn, Y.T. Yu, E.K. Suh, Nano-bitter gourd-like structured CuO for enhanced hydrogen gas sensor application. Int. J. Hydrog. Energy 43, 22705–22714 (2018). https://doi.org/10.1016/j.ijhydene.2018.09.162

    Article  CAS  Google Scholar 

  29. S.A.A. Terohid, S. Heidari, A. Jafari, S. Asgary, Effect of growth time on structural, morphological and electrical properties of tungsten oxide nanowire. Appl. Phys. A 124, 567 (2018). https://doi.org/10.1007/s00339-018-1955-0

    Article  CAS  Google Scholar 

  30. F. Ozel, H. Kockar, O. Karaagac, Growth of iron oxide nanoparticles by hydrothermal process: effect of reaction parameters on the nanoparticle size. J. Supercond. Nov. Magn. 28, 823–829 (2015). https://doi.org/10.1007/s10948-014-2707-9

    Article  CAS  Google Scholar 

  31. A. Moulahi, F. Sediri, ZnO nanoswords and nanopills: hydrothermal synthesis, characterization and optical properties. Ceram. Int. 40, 943–950 (2014). https://doi.org/10.1016/j.ceramint.2013.06.090

    Article  CAS  Google Scholar 

  32. F. Janene, H. Dhaouadi, L. Arfaoui, N. Etteyeb, F. Touati, Nanoplate-like CuO: hydrothermal synthesis, characterization, and electrochemical properties. Ionics 22, 1395–1403 (2016). https://doi.org/10.1007/s11581-016-1660-y

    Article  CAS  Google Scholar 

  33. C.H. Lu, L.M. Qu, J.H. Yang, D.Y. Zhang, N.Z. Wu, J.M. Ma, Simple template-free solution route for the controlled synthesis of Cu(OH)2 and CuO nanostructures. J. Phys. Chem. B 108, 17825–17831 (2004). https://doi.org/10.1021/jp046772p

    Article  CAS  Google Scholar 

  34. F. Janene, H. Dhaouadi, N. Etteyeb, F. Touati, Flower-like cuprous oxide: hydrothermal synthesis, optical, and electrochemical properties. Ionics 21, 477–485 (2015). https://doi.org/10.1007/s11581-014-1195-z

    Article  CAS  Google Scholar 

  35. H. Qamar, S. Rehman, D.K. Chauhan, A.K. Tiwari, V. Upmanyu, Green synthesis, characterization and antimicrobial activity of copper oxide nanomaterial derived from momordica charantia. Int. J. Nanomedicine 15, 2541–2553 (2020). https://doi.org/10.2147/IJN.S240232

    Article  CAS  Google Scholar 

  36. A.N. Ejhieh, H.Z. Mobarakeh, Heterogeneous photodecolorization of mixture of methylene blue and bromophenol blue using CuO-nano-clinoptilolite. J. Ind. Eng. Chem. 20, 1421–1431 (2014). https://doi.org/10.1016/j.jiec.2013.07.027

    Article  CAS  Google Scholar 

  37. A. Bera, K. Deb, K.K. Chattopadhyay, R. Thapa, B. Saha, Mixed phase delafossite structured p-type CuFeO2/CuO thin film on FTO coated glass and its Schottky diode characteristics. Microelectron. Eng. 162, 23–26 (2016). https://doi.org/10.1016/j.mee.2016.04.020

    Article  CAS  Google Scholar 

  38. J. Sultana, S. Paul, A. Karmakar, R. Yi, G.K. Dalapati, S. Chattopadhyay, Chemical bath deposited (CBD) CuO thin films on n-silicon substrate for electronic and optical applications: impact of growth time. Appl. Surf. Sci. 418, 380–387 (2017). https://doi.org/10.1016/j.apsusc.2016.12.139

    Article  CAS  Google Scholar 

  39. M.P. Rao, V.K. Ponnusamy, J.J. Wu, A.M. Asiri, S. Anandan, Hierarchical CuO microstructures synthesis for visible light driven photocatalytic degradation of Reactive Black-5 dye. J. Environ. Chem. Eng. 6, 6059–6068 (2018). https://doi.org/10.1016/j.jece.2018.09.041

    Article  CAS  Google Scholar 

  40. Y. Cai, F. Yang, L. Wu, Y. Shu, G. Qu, A. Fakhri, V.K. Gupta, Hydrothermal-ultrasonic synthesis of CuO nanorods and CuWO4 nanoparticles for catalytic reduction, photocatalysis activity, and antibacterial properties. Mater. Chem. Phys. (2021). https://doi.org/10.1016/j.matchemphys.2020.123919

    Article  Google Scholar 

  41. D. Patil, J. Manjanna, S. Chikkamath, V. Uppar, M. Chougala, Facile synthesis of stable Cu and CuO particles for 4-nitrophenol reduction, methylene blue photodegradation and antibacterial activity. J Hazard Mater. (2021). https://doi.org/10.1016/j.hazadv.2021.100032

    Article  Google Scholar 

  42. B.G. Ganga, P.N. Santhosh, Manipulating aggregation of CuO nanoparticles: correlation between morphology and optical properties. J. Alloys Compd. 612, 456–464 (2014). https://doi.org/10.1016/j.jallcom.2014.05.171

    Article  CAS  Google Scholar 

  43. S.G. Ovchinnikov, B.A. Gizhevskii, Y.P. Sukhorukov, A.E. Ermakov, A.M. Uimin, E.A. Kozlov, Y. Kotov, A.V. Bagazeev, Specific features of the electronic structure and optical spectra of nanoparticles with strong electron correlation. Phys. Solid State 49, 1116–1120 (2007). https://doi.org/10.1134/S1063783407060169

    Article  CAS  Google Scholar 

  44. D. Zhu, H. Ma, Q. Zhen, J. Xin, L. Tan, C. Zhang, X. Wang, B. Xiao, Hierarchical flower-like zinc oxide nanosheets in-situ growth on three-dimensional ferrocene functionalized graphene framework for sensitive determination of epinephrine and its oxidation derivative. Appl. Surf. Sci. (2020). https://doi.org/10.1016/j.apsusc.2020.146721

    Article  Google Scholar 

  45. B. Shruthi, V.B. Raju, B.J. Madhu, Synthesis spectroscopic and electrochemical performance of pasted β-nickel hydroxide electrode in alkaline electrolyte. Spectrochim. Acta A 135, 683–689 (2015). https://doi.org/10.1016/j.saa.2014.07.009

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by [Am], [Ft], and [Hd]. The first draft of the manuscript was written by [Fj], and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Fatma Janene.

Ethics declarations

Conflict interest

No conflict of interest exits in the submission of this manuscript. The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

The manuscript is approved by all authors for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janene, F., Moulahi, A., Touati, F. et al. Hydrothermal synthesis, characterization, electrochemical, and optical properties of 2D sheet-like CuO nanostructures. J Mater Sci: Mater Electron 34, 69 (2023). https://doi.org/10.1007/s10854-022-09406-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09406-z

Navigation