Skip to main content
Log in

Study on HAZ of nanosecond UV laser cutting multilayer ferrite ceramic composite flakes for electromagnetic shielding

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ferrite composites composed of brittle ferrite ceramic, soft polymers and rubber pose a challenge for low-damage cutting. In this paper, nanosecond UV (Ultra Violet) laser was used to cut the ferrite composite flake with thickness of 0.3 mm. The HAZ (Heat Affected Zone) of nanosecond UV laser cutting composite sheet is studied, and an improved “Scanning-Cooling” strategy for reducing HAZ width is proposed. The results demonstrate that the improved scanning strategy suppresses the expansion of HAZ significantly, and its width is only 147.6 µm (reduced by 7.15 times). Furthermore, parameters are optimized on the basis of the improved strategy, and the narrowest HAZ width of 45.3 µm is obtained under high-laser frequency (120 kHz) and scanning speed (1400 mm/s). Improved scanning strategy and optimized parameters are used to cut and pattern the surface of the electromagnetic shielding patch, with edges of low thermal damage and uniform depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. A. Gupta, R.K. Jha, IEEE Access 3, 1206 (2015)

    Article  Google Scholar 

  2. G. Hattab, E. Visotsky, M. Cudak, A. Ghosh, I.E.E.E. Wirel, Commun. 25, 18 (2018)

    Google Scholar 

  3. A. Lazaro, R. Villarino, D. Girbau, Sensors (Switzerland) (2018). https://doi.org/10.3390/s18113746

    Article  Google Scholar 

  4. V. Coskun, B. Ozdenizci, K. Ok, Wirel. Pers. Commun. 71, 2259 (2013)

    Article  Google Scholar 

  5. M. Zulqarnain, S. Stanzione, G. Rathinavel, S. Smout, M. Willegems, K. Myny, E. Cantatore, Npj Flex. Electron. 4, 1 (2020)

    Article  Google Scholar 

  6. P. Steffan, J. Stehlik, R. Vrba, I.F.I.P. Int, Fed. Inf. Process. 245, 649 (2007)

    Google Scholar 

  7. B. Shen, W. Zhai, M. Tao, J. Ling, W. Zheng, A.C.S. Appl, Mater. Interfaces 5, 11383 (2013)

    Article  CAS  Google Scholar 

  8. D. Li, T.W. Li, E.P. Li, Y.J. Zhang, IEEE Trans. Electromagn. Compat. 60, 768 (2018)

    Article  Google Scholar 

  9. Y.J. Wan, X.Y. Wang, X.M. Li, S.Y. Liao, Z.Q. Lin, Y.G. Hu, T. Zhao, X.L. Zeng, C.H. Li, S.H. Yu, P.L. Zhu, R. Sun, C.P. Wong, ACS Nano 14, 14134 (2020)

    Article  CAS  Google Scholar 

  10. Y. Fei, M. Liang, Y. Chen, H. Zou, Ind. Eng. Chem. Res. 59, 154 (2020)

    Article  CAS  Google Scholar 

  11. K. Chandra Babu Naidu, S. Roopas Kiran, W. Madhuri, IEEE Trans. Magn (2017). https://doi.org/10.1109/TMAG.2016.2625773

    Article  Google Scholar 

  12. K. Singh, A. Ohlan, V.H. Pham, R.B. Balasubramaniyan, S. Varshney, J. Jang, S.H. Hur, W.M. Choi, M. Kumar, S.K. Dhawan, B.S. Kong, J.S. Chung, Nanoscale 5, 2411 (2013)

    Article  CAS  Google Scholar 

  13. M.M. Ismail, S.N. Rafeeq, J.M.A. Sulaiman, A. Mandal, Appl. Phys. A Mater. Sci. Process. 124, 1 (2018)

    Article  Google Scholar 

  14. P.G.B. Boe, O. Fjkjoh, O. Pg, F. Ijob 15, 6751 (2022)

    Google Scholar 

  15. M. Wu, A.K. Darboe, X. Qi, R. Xie, S. Qin, C. Deng, G. Wu, W. Zhong, J. Mater. Chem. C 8, 11936 (2020)

    Article  CAS  Google Scholar 

  16. Y. Huang, F. Tian, Y. Liu, M. Li, S. Xu, Y. Yu, J. Li, W. Yang, H. Li, J. Colloid Interface Sci. 605, 667 (2022)

    Article  CAS  Google Scholar 

  17. R.S. Yadav, I. Kuřitka, J. Vilcakova, D. Skoda, P. Urbánek, M. Machovsky, M. Masař, L. Kalina, J. Havlica, Compos. Part B Eng. 166, 95 (2019)

    Article  CAS  Google Scholar 

  18. B.J. Madhu, S.T. Ashwini, B. Shruthi, B.S. Divyashree, A. Manjunath, H.S. Jayanna, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 186, 1 (2014)

    Article  CAS  Google Scholar 

  19. S. Varshney, S.K. Dhawan, J. Electron. Mater. 46, 1811 (2017)

    Article  CAS  Google Scholar 

  20. F. Müller, J. Monaghan, Int. J. Mach. Tools Manuf. 40, 1351 (2000)

    Article  Google Scholar 

  21. A.K. Dubey, V. Yadava, J. Mater. Process. Technol. 195, 15 (2008)

    Article  CAS  Google Scholar 

  22. R. Negarestani, L. Li, H.K. Sezer, D. Whitehead, J. Methven, Int. J. Adv. Manuf. Technol. 49, 553 (2010)

    Article  Google Scholar 

  23. C. Leone, S. Genna, Compos. Part B Eng. 140, 174 (2018)

    Article  Google Scholar 

  24. A. Salama, L. Li, P. Mativenga, A. Sabli, Appl. Phys. A Mater. Sci. Process. 122, 1 (2016)

    Article  Google Scholar 

  25. G.D. Gautam, A.K. Pandey, Opt. Laser Technol. 100, 183 (2018)

    Article  CAS  Google Scholar 

  26. S. Guarino, G.S. Ponticelli, O. Giannini, S. Genna, F. Trovalusci, Int. J. Adv. Manuf. Technol. 94, 1373 (2018)

    Article  Google Scholar 

  27. Y. Zhang, Y. Wang, J. Zhang, Y. Liu, X. Yang, Q. Zhang, Ceram. Int. 41, 6525 (2015)

    Article  CAS  Google Scholar 

  28. R. Zhang, W. Li, Y. Liu, C. Wang, J. Wang, X. Yang, L. Cheng, Appl. Surf. Sci. 330, 321 (2015)

    Article  CAS  Google Scholar 

  29. R. Weber, T. Graf, P. Berger, V. Onuseit, M. Wiedenmann, C. Freitag, A. Feuer, Opt. Express 22, 11312 (2014)

    Article  CAS  Google Scholar 

  30. D. Herzog, P. Jaeschke, O. Meier, H. Haferkamp, Int. J. Mach. Tools Manuf. 48, 1464 (2008)

    Article  Google Scholar 

  31. M. Altin Karataş, H. Gökkaya, Def. Technol. 14, 318 (2018)

    Article  Google Scholar 

  32. A. Goeke, C. Emmelmann, Phys. Procedia 5, 253 (2010)

    Article  CAS  Google Scholar 

  33. M. Li, G. Gan, Y. Zhang, X. Yang, Opt. Laser Technol. 122, 105891 (2020)

    Article  CAS  Google Scholar 

  34. Y. Mukai, V.T. Bharambe, J.J. Adams, M. Suh, Text. Res. J. 89, 2789 (2019)

    Article  CAS  Google Scholar 

  35. M. Li, S. Li, X. Yang, Y. Zhang, Z. Liang, Opt. Laser Technol. 107, 443 (2018)

    Article  CAS  Google Scholar 

  36. W. Li, G. Zhang, Y. Huang, Y. Rong, Compos. Struct. 273, 114258 (2021)

    Article  Google Scholar 

  37. C. Leone, N. Pagano, V. Lopresto, I. De Iorio, I.C.C.M. Int, Conf. Compos. Mater. 101, 2965–2975 (2009)

    Google Scholar 

  38. C. Leone, E. Mingione, S. Genna, Compos. Part B Eng. (2021). https://doi.org/10.1016/j.compositesb.2021.109146

    Article  Google Scholar 

  39. J. Tetteh, S. Howells, E. Metcalfe, T. Suzuki, Chemom. Intell. Lab. Syst. 41, 17 (1998)

    Article  CAS  Google Scholar 

  40. H.S. Choi, S.J. Suh, S.W. Kim, H.J. Kim, J.W. Park, Polymers (Basel). 13, 1 (2021)

    Google Scholar 

  41. M. Zhang, X.X. Wang, W.Q. Cao, J. Yuan, M.S. Cao, Adv. Opt. Mater. 7, 1 (2019)

    CAS  Google Scholar 

  42. J. Lipton, J.A. Röhr, V. Dang, A. Goad, K. Maleski, F. Lavini, M. Han, E.H.R. Tsai, G.M. Weng, J. Kong, E. Riedo, Y. Gogotsi, A.D. Taylor, Matter 3, 546 (2020)

    Article  Google Scholar 

Download references

Funding

This work is supported by Natural Science Foundation of Guangdong Province (No.2020A1515011393); Open Project Program of Wuhan National Laboratory for Optoelectronics (No.2021WNL0KF018).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The first draft of the manuscript was written by XF and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yu Huang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, X., Rong, Y., Xu, J. et al. Study on HAZ of nanosecond UV laser cutting multilayer ferrite ceramic composite flakes for electromagnetic shielding. J Mater Sci: Mater Electron 33, 24354–24366 (2022). https://doi.org/10.1007/s10854-022-09154-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09154-0

Navigation