Skip to main content
Log in

Effect of composition on the dielectric properties and thermal conductivity of α-SiAlON ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, a series of dense Ym/3Si12-(m+n)Alm+nOnN16-n (m = 1.1–1.5, n = 1.0) ceramics were prepared by hot-pressing at 1900 °C for 1 h. The effects of composition on the thermal conductivity, dielectric, and wave-transparent properties of Y-α-SiAlON ceramics were investigated. The X-ray diffraction (XRD) results showed that all ceramic samples exhibited a pure α-SiAlON phase. The dielectric properties of Y-α-SiAlON at 1 kHz–120 MHz and 8.2–12.4 GHz were investigated. The results indicate that a smaller m value leads to weaker ion and interfacial polarisations, resulting in a lower dielectric constant. The three-dimensional relationship between microwave transmittance, frequency, and sample thickness was calculated by simulation, and the results showed that Y0.40Si9.8Al2.2O1.0N15.0 had the best wave-transparent properties. The thermal conductivity of the Y-α-SiAlON ceramics showed a decreasing trend with increasing m value and temperature. The single-phase dense Y0.50Si9.5Al2.5O1.0N15.0 exhibited the minimum thermal conductivity, which was 9.75–5.21 W/m·K (20–1000 °C). Therefore, Y-α-SiAlON ceramics are expected to be promising high-temperature window materials owing to their excellent thermal insulation and wave-transparent properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. T. Kenion, N. Yang, C.Y. Xu, Dielectric and mechanical properties of hypersonic radome materials and metamaterial design: a review. J. Eur. Ceram. Soc. 42, 1–17 (2022)

    Article  CAS  Google Scholar 

  2. M.R. Visokay, J.J. Chambers, A. Rotondaro, A. Shanware, L. Colombo, Application of HfSiON as a gate dielectric material. Appl. Phys. Lett. 80, 3183–3185 (2002)

    Article  CAS  Google Scholar 

  3. J. Barta, M. Manela, R. Fischer, Si3N4 and Si2N2O for high performance radomes. Mater. Sci. Eng. 71, 265–272 (1985)

    Article  CAS  Google Scholar 

  4. A. Nag, R.R. Rao, P.K. Panda, High temperature ceramic radomes (HTCR) - a review. Ceram. Int. 47, 20793–20806 (2021)

    Article  CAS  Google Scholar 

  5. B. Joshi, H.H. Lee, Y.H. Kim, Z. Fu, K. Niihara, S.W. Lee, Hot pressed translucent (Mg, Y)-α/β-Sialon ceramics. Mater. Lett. 80, 178–180 (2012)

    Article  CAS  Google Scholar 

  6. G. Liu, K. Chen, G.E. Zhenbin, H. Zhou, Research progress of self-reinforced α-SiAlON ceramicss. J. Chin. Ceram. Soc. 31, 292–295 (2003)

    CAS  Google Scholar 

  7. A. Rosenflanz, I.W. Chen, Kinetics of phase transformations in SiAlON ceramics: I. Effects of cation size, composition and temperature. J. Eur. Ceram. Soc. 19, 2325–2335 (1999)

    Article  CAS  Google Scholar 

  8. Z. Shen, M. Nygren, On the extension of the α-sialon phase area in yttrium and rare-earth doped systems. J. Eur. Ceram. Soc. 17, 1639–1645 (1997)

    Article  CAS  Google Scholar 

  9. D.M. Liu, C.J. Chen, R.R.R. Lee, Thermal diffusivity/conductivity in SiAlON ceramics. J. Appl. Phys. 77, 494–496 (1995)

    Article  CAS  Google Scholar 

  10. K.K. Kandi, N. Thallapalli, S. Chilakalapalli, Development of silicon nitride-based ceramic radomes-a review. Int. J. Appl. Ceram. Technol. 12, 909–920 (2015)

    Article  CAS  Google Scholar 

  11. S. Avcioglu, S. Kurama, Co-dopants effect on translucent SiAlON ceramics production. Aust. Ceram. Soc. 56, 1397–1404 (2020)

    Article  Google Scholar 

  12. Y. Feng, L. Liu, C. Liu, H. Zhang, Z. Yu, Y. Jie, High infrared transmission of Y3+-Yb 3+-doped α-SiAlON. Mater. Lett. 62, 4535–4538 (2008)

    Article  Google Scholar 

  13. X.L. Su, P.L. Wang, W.W. Chen, B. Zhu, Y.Y. Cheng, D.S. Yan, Translucent α-sialon ceramics by hot pressing. J. Am. Ceram. Soc. 87, 730–732 (2004)

    Article  CAS  Google Scholar 

  14. D.K. Kim, H.N. Kim, Y.H. Seong, S.S. Baek, E.S. Kang, Y.G. Baek, Dielectric properties of SiAlON ceramics. Key Eng. Mater. 403, 125–128 (2009)

    Article  CAS  Google Scholar 

  15. Z. Hou, F. Ye, L. Liu, Q. Liu, H. Zhang, Effects of solid content on the phase assemblages, mechanical and dielectric properties of porous α-SiAlON ceramics fabricated by freeze casting. Ceram. Int. 39, 1075–1079 (2013)

    Article  CAS  Google Scholar 

  16. S.R. Kushan, I. Uzun, B. Dogan, H. Mandal, Experimental and finite element study of the thermal conductivity of α-SiAlON ceramics. J. Am. Ceram. Soc. 90, 3902–3907 (2007)

    CAS  Google Scholar 

  17. M. Mitomo, N. Hirosaki, T. Mitsuhashi, Thermal conductivity of α-sialon ceramics. J. Mater. Sci. 3, 915–916 (1984)

    CAS  Google Scholar 

  18. B. Joshi, G. Gyawali, H. Wang, T. Sekino, S.W. Lee, Thermal and mechanical properties of hot pressed translucent Y2O3 doped Mg-α/β-Sialon ceramics. J. Alloy. Compd. 557, 112–119 (2013)

    Article  CAS  Google Scholar 

  19. J. Leitner, P. Chuchvalec, D. Sedmidubsky, A. Strejc, P. Abrman, Estimation of heat capacities of solid mixed oxides. Thermochim. Acta 395, 27–46 (2002)

    Article  Google Scholar 

  20. K.W. Schlichting, N.P. Padture, P.G. Klemens, Thermal conductivity of dense and porous yttria-stabilized zirconia. J. Mater. Sci. 36, 3003–3010 (2001)

    Article  CAS  Google Scholar 

  21. S.L. Hwang, I.W. Chen, Reaction hot pressing of α′- and β′- SiAlON ceramics. J. Am. Ceram. Soc. 77, 165–171 (1994)

    Article  CAS  Google Scholar 

  22. M. Menon, I.W. Chen, Reaction densification of α′-SiAlON: 1, wetting behavior and acid-base reactions. J. Am. Ceram. Soc. 78, 545–552 (1995)

    Article  CAS  Google Scholar 

  23. Z.W. Ren, W.C. Zhou, Y.C. Qing, S.C. Duan, H.J. Pan, Y.Y. Zhou, N li, Microwave absorption and mechanical properties of SiCf/SiOC composites with SiO2 fillers. Ceram. Int. 47, 8478–8485 (2021)

    Article  CAS  Google Scholar 

  24. L. Tang, Z.Y. Yang, Y.S. Tang, J.L. Zhang, J. Kong, J.W. Gu, Facile functionalization strategy of PBO fibres for synchronous improving the mechanical and wave-transparent properties of the PBO fibres/cyanate ester laminated composites. Compos. A 150, 106622 (2021)

    Article  CAS  Google Scholar 

  25. X. Long, Y. Yang, X. Zhang, Z. Jian, G. Wen, Crystal structure and wave-transparent properties of lithium aluminum silicate glass-ceramics. Ceram. Int. 44, 14896–14900 (2018)

    Article  Google Scholar 

  26. P.J. Liu, V.M. Hong, Z.J. Yao, J.T. Zhou, Y.M. Lei, Z.H. Yang, H.L. Lv, L.B. Kong, Facile synthesis and hierarchical assembly of flowerlike NiO structures with enhanced dielectric and microwave absorption properties. ACS Appl. Mater. Interfaces. 9, 16404 (2017)

    Article  CAS  Google Scholar 

  27. C. Lin, J.Y. Hua, C.X. Yu, F. Jing, Synthesis and thermophysical properties of RETa3O9 (RE=Ce, Nd, Sm, Eu, Gd, Dy, Er) as promising thermal barrier coatings. J. Am. Ceram. Soc. 101, 1266–1278 (2018)

    Article  Google Scholar 

  28. B. Jhca, A. Sml, B. Sn, A. Sk, Effect of Y2O3 content on the microstructural characteristics and the mechanical and thermal properties of Yb-doped SiAlON ceramics. Ceram. Int. 48, 12161–12169 (2022)

    Article  Google Scholar 

  29. J. Leitner, P. Vonka, D. Sedmidubsky, P. Svoboda, Application of Neumann-Kopp rule for the estimation of heat capacity of mixed oxides. Thermochim. Acta 497, 7–13 (2010)

    Article  CAS  Google Scholar 

  30. D. Liu, C. Chen, L.J. Lin, Thermal conduction behavior in polycrystalline (Sr1-x, K2x)Zr4(PO4)6 ceramic. J. Appl. Phys. 75, 3765–3768 (1994)

    Article  CAS  Google Scholar 

  31. J. Feng, B. Xiao, R. Zhou, W. Pan, Anisotropy in elasticity and thermal conductivity of monazite-type REPO4(RE=La, Ce, Nd, Sm, Eu and Gd) from first-principles calculations. Acta Mater. 61, 7364–7383 (2013)

    Article  CAS  Google Scholar 

  32. Y. Wang, Y. Fan, X. Ping, Glass-like thermal conductivities in (La1-x1Yx1)2(Zr1-x2Yx2)2O7-x2(La1-x1Yx1)2(Zr1-x2Yx2)2O7-x2 (x=x1+x2, 0⩽x⩽1.0) solid solutions. Acta Mater. 60, 7024–7033 (2012)

    Article  CAS  Google Scholar 

  33. R. Mévrel, J.C. Laizet, A. Azzopardi, B. Leclercq, M. Poulain, O. Lavigne, D. Demange, Thermal diffusivity and conductivity of Zr1-xYxO2-x/2 (x=0, 0.084 and 0.179) single crystals. J. Eur. Ceram. Soc. 24, 3081–3089 (2004)

    Article  Google Scholar 

  34. P.G. Klemens, Thermal resistance due to point defects at high temperatures. Phys. Rev. 119, 507–509 (1960)

    Article  CAS  Google Scholar 

  35. I. Ganesh, Y.R. Mahajan, Slip-cast fused silica radomes for hypervelocity vehicles: advantages, challenges, and fabrication techniques. Handb. Adv. Ceram. Compos. (2020). https://doi.org/10.1007/978-3-030-16347-1_55

    Article  Google Scholar 

  36. L. Wu, F. Xiang, W.L. Liu, R. Ma, H. Wang, Hot-pressing sintered BN-SiO2 composite ceramics with excellent thermal conductivity and dielectric properties for high frequency substrate. Ceram. Int. 44, 16594–16598 (2018)

    Article  CAS  Google Scholar 

  37. Q.J. Dai, D.H. He, F.C. Meng, P. Liu, X. Liu, Dielectric constant, dielectric loss and thermal conductivity of Si3N4 ceramics by hot pressing with CeO2-MgO as sintering aid. Mater. Sci. Semicond. Process. 121, 105409 (2021)

    Article  CAS  Google Scholar 

  38. J.B. Wen, H.J. Wang, L. Fan, K. Peng, L. Su, Non-additive sintering of Si2N2O ceramic with enhanced high-temperature strength, oxidation resistance, and dielectric properties. Ceram. Int. 47, 25689–25695 (2021)

    Article  CAS  Google Scholar 

  39. I. Ganesh, N. Thiyagarajan, D.C. Jana, Y.R. Mahajan, G. Sundararajan, Influence of chemical composition and Y2O3 on sinterability, dielectric constant, and CTE of β-SiAlON. J. Am. Ceram. Soc. 1, 115–120 (2008)

    Google Scholar 

  40. Y.L. Lan, J.Q. Li, Q.Z. Chen, C.H. Zhang, W.Q. Ao, Mechanical properties and thermal conductivity of dense β-SiAlON ceramics fabricated by two-stage spark plasma sintering with Al2O3-AlN-Y2O3 additives. J. Eur. Ceram. Soc. 40, 12–18 (2019)

    Article  Google Scholar 

Download references

Funding

This work was supported by the International Cooperation Foundation of Shaanxi Province, China (No. 2022KW-34), the Fundamental Research Funds for the Central Universities (No. D5000210722), the National Natural Science Foundation of China (No. 52072301), State Key Laboratory of New Ceramic and Fine Processing Tsinghua University (No. KFZD202102), State Key Laboratory of Solidification Processing (NPU) (No. 2021-TS-08), the China-Poland International Collaboration Fund of National Natural Science Foundation of China (No. 51961135301). We would like to acknowledge the Analytical & Testing Centre of Northwestern Polytechnical University for the XRD, SEM, and other analyses.

Author information

Authors and Affiliations

Authors

Contributions

JG and RWY: performed the experiment and manuscript preparation. JX and KC: contributed significantly to analysis and manuscript preparation. HXY and FG: helped perform the analysis with constructive discussions.

Corresponding authors

Correspondence to Jie Xu or Feng Gao.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Ethical approval

We confirm that the article meets ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Xu, J., Yang, R. et al. Effect of composition on the dielectric properties and thermal conductivity of α-SiAlON ceramics. J Mater Sci: Mater Electron 33, 22480–22491 (2022). https://doi.org/10.1007/s10854-022-09026-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09026-7

Navigation