Skip to main content
Log in

Utilization of polyvinyl amine hydrolysis product in enhancing the catalytic properties of Co3O4 nanowires: toward potentiometric glucose bio-sensing application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, we used the concept of overnight hydrolysis of polyvinyl amine to grow cobalt oxide (Co3O4) nanostructures with enhanced catalytic properties. The controlled synthesis of Co3O4 nanostructures was carried out with the hydrothermal method using hydrolyzed products. Results showed that the hydrocarbon chain and amide groups produced during the growth process have a great impact on both the morphology and catalytic properties of Co3O4 nanostructures. In fact, the hydrolyzed products supported the growth of nanostructures with a well-defined almost one-dimensional (1-D) morphology of Co3O4 nanowires with a high surface/volume ratio. The as-prepared nanowires were loaded with a high amount of glucose oxidase in order to make them sensitive to glucose and observe a potentiometric response in its presence. The performance of the fabricated biosensor was evaluated in terms of different analytical parameters such as linear range, stability, reproducibility, repeatability, life time, selectivity, and response time. Thus, the obtained Co3O4-based glucose biosensor exhibited a linear response over the concentration range from 0.0005 to 6 mM, with a limit of detection of 0.0001 mM. The estimated Nernstian slope for the glucose biosensor was 42 mV/dec, with stability that exceeds four weeks. Using electrochemical impedance spectroscopy, the Co3O4 nanowires showed a low charge transfer resistance of 2.2 × 103 Ohms. Practically, the biosensor was used successfully to measure the glucose concentration in real blood samples. The results obtained confirm that the proposed glucose biosensor can be used as an alternative tool for monitoring glucose levels. The synthesis procedure described herein has a high potential to produce nanostructured materials on a large scale with well-defined morphology and improved catalytic properties for possible applications in batteries, supercapacitors, and water splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated and analyzed during this study are available from the corresponding author upon reasonable request.

References

  1. Q. Wang, I. Kaminska, J. Niedziolka-Jonsson, M. Opallo, M. Li, R. Boukherroub, S. Sensitive sugar detection using 4-aminophenylboronic acid modified grapheme. Szunerits Biosens. Bioelectron. 50, 331–337 (2013).

  2. X. Yang, Y. Yuan, Z. Dai, F. Liu, J. Huang, Optical property and adsorption isotherm models of glucose sensitive membrane based on prism SPR sensor. Sens. Actuators B 237, 150–158 (2016)

    Article  CAS  Google Scholar 

  3. Y. Pang, Z. Huang, Y. Yang, Y. Long, H. Zheng, Colorimetric detection of glucose based on ficin with peroxidase-like activity. Spectrochim. Acta Part A 189, 510–515 (2018)

    Article  CAS  Google Scholar 

  4. W. Liu, F. Ding, Y. Wang, L. Mao, R. Liang, P. Zou, X. Wang, Q. Zhao, H. Rao, Fluorometric and colorimetric sensor array for discrimination of glucose using enzymatic-triggered dual-signal system consisting of Au@Ag nanoparticles and carbon nanodots. Sens. Actuators B 265, 310–317 (2018)

    Article  CAS  Google Scholar 

  5. M.R. Guascito, D. Chirizzi, C. Malitesta, M. Siciliano, T. Siciliano, A. Tepore, Amperometric non-enzymatic bimetallic glucose sensor based on platinum tellurium microtubes modified electrode. Electrochem. Commun. 22, 45–48 (2012)

    Article  CAS  Google Scholar 

  6. Z.H. Ibupoto, S. Elhag, M.S. AlSalhi, O. Nur, M. Willander, Effect of urea on the morphology of Co3O4 nanostructures and their application for potentiometric glucose biosensor. Electroanalysis 26, 1773–1781 (2014)

    Article  CAS  Google Scholar 

  7. M. Adeel, Md.M. Rahman, I. Caligiuri, V. Canzonieri, F. Rizzolio, S. Daniele, Recent advances of electrochemical and optical enzyme-free glucose sensors operating at physiological conditions. Biosens. Bioelectron. 165, 112331 (2020)

    Article  CAS  Google Scholar 

  8. R. Wilson, A.P.F. Turner, Glucose oxidase: an ideal enzyme. Biosens. Bioelectron. 7, 165–185 (1992)

    Article  CAS  Google Scholar 

  9. R.A. Soomro, O.P. Akyuz, R. Ozturk, Z.H. Ibupoto, Highly sensitive non-enzymatic glucose sensing using gold nanocages as efficient electrode material. Sens. Actuators B 233, 230–236 (2019)

    Article  CAS  Google Scholar 

  10. H. Mei, W. Wu, B. Yu, H. Wu, S. Wang, Q. Xia, Electrochemical non-enzymatic glucose sensor based on hierarchical 3D Co3O4/Ni heterostructure electrode for pushing sensitivity boundary to a new limit. Sens. Actuators B 233, 68–75 (2016)

    Article  CAS  Google Scholar 

  11. Q. Sheng, H. Mei, H. Wu, X. Zhang, S. Wang, A highly sensitive non-enzymatic glucose sensor based on PtxCo1−x/C nanostructured composites. Sens. Actuators B 207, 51–58 (2015)

    Article  CAS  Google Scholar 

  12. S. Poyraz, Z. Liu, Y. Liu, N. Lu, M.J. Kim, X. Zhang, One-step synthesis and characterization of poly (o-toluidine) nanofiber/metal nanoparticle composite networks as non-enzymatic glucose sensors. Sens. Actuators B 201, 65–74 (2014)

    Article  CAS  Google Scholar 

  13. M. Li, X. Bo, Z. Mu, Y. Zhang, L. Guo, Electrodeposition of nickel oxide and platinum nanoparticles on electrochemically reduced graphene oxide film as a nonenzymatic glucose sensor. Sens. Actuators B 192, 261–268 (2014)

    Article  CAS  Google Scholar 

  14. L.T. Hoa, J.S. Chung, S.H. Hur, A highly sensitive enzyme-free glucose sensor based on Co3O4 nanoflowers and 3D graphene oxide hydrogel fabricated via hydrothermal synthesis. Sens. Actuators B 223, 76–82 (2016)

    Article  CAS  Google Scholar 

  15. M. Chowdhury, F. Cummings, M. Kebede, V. Fester, Binderless solution processed Zn doped Co3O4 film on FTO for rapid and selective non-enzymatic glucose detection. Electroanalysis 2, 578–586 (2017)

    Article  CAS  Google Scholar 

  16. J. Xu, N. Xu, X. Zhang, P. Xu, B. Gao, X. Peng, S. Mooni, Y. Li, J. Fu, K. Huo, Phase separation induced rhizobia-like Ni nanoparticles and TiO2 nanowires composite arrays for enzyme-free glucose sensor. Sens. Actuators B 244, 38–46 (2017)

    Article  CAS  Google Scholar 

  17. M. Baghayeri, H. Veisi, M. Ghanei-Motlagh, Amperometric glucose biosensor based on immobilization of glucose oxidase on a magnetic glassy carbon electrode modified with a novel magnetic. Sens. Actuators B 249, 321–330 (2017)

    Article  CAS  Google Scholar 

  18. Y. Ni, J. Xu, Q. Liang, S. Shao, Enzyme-free glucose sensor based on heteroatom-enriched activated carbon (HAC) decorated with hedgehog-like NiO nanostructures. Sens. Actuators B 250, 491–498 (2017)

    Article  CAS  Google Scholar 

  19. H. Wu, Y. Yu, W. Gao, A. Gao, A.M. Qasim, Nickel plasma modification of graphene for high-performance non-enzymatic glucose sensing. Sens. Actuators B 251, 842–850 (2017)

    Article  CAS  Google Scholar 

  20. J. Ghosh, R. Ghosh, P.K. Giri, Tuning the visible photoluminescence in Al doped ZnO thin film and its application in label-free glucose detection. Sens. Actuators B 254, 681–689 (2018)

    Article  CAS  Google Scholar 

  21. S. Wang, S. Zhang, M. Liu, H. Song, J. Gao, Y. Qian, MoS2 as connector inspired high electrocatalytic performance of NiCo2O4 nanoplates towards glucose. Sens. Actuators B 254, 1101–1109 (2018)

    Article  CAS  Google Scholar 

  22. L. Liu, Z. Wang, J. Yang, NiCo2O4 nanoneedle-decorated electrospun carbon nanofiber nanohybrids for sensitive non-enzymatic glucose sensors. Sens. Actuators B 258, 920–928 (2018)

    Article  CAS  Google Scholar 

  23. Y. Liu, A.P.F. Turner, M. Zhao, W.C. Mak, Biochemical properties of a new thermo- and solvent-stable xylanase recovered using three phase partitioning from the extract of Bacillus oceanisediminis strain SJ3. Biosens. Bioelectron. 100, 374–381 (2018)

    Article  CAS  Google Scholar 

  24. M. Wang, F. Liu, Z. Zhang, E. Meng, F. Gong, F. Li, Co3O4 nanoparticles as a noninvasive electrochemical sensor for glucose detection in saliva. NANO 16(01), 2150009 (2021)

    Article  CAS  Google Scholar 

  25. P. Kannan, G. Maduraiveeran, Bimetallic Nanomaterials-Based Electrochemical Biosensor Platforms for Clinical Applications. Micromachines 13(1), 76 (2022)

    Article  Google Scholar 

  26. G.A. Naikoo, H. Salim, I.U. Hassan, T. Awan, F. Arshad, M.Z. Pedram, W. Ahmed, A. Qurashi, Recent advances in non-enzymatic glucose sensors based on metal and metal oxide nanostructures for diabetes management—a review. Front Chem. 9, 8957 (2021)

    Google Scholar 

  27. M.D. Prakash, S.L. Nihal, S. Ahmadsaidulu, R. Swain, A.K. Panigrahy, Design and modelling of highly sensitive glucose biosensor for lab-on-chip applications. SILICON (2022). https://doi.org/10.1007/s12633-021-01543-0

    Article  Google Scholar 

  28. L. Ding, M. Zhao, S. Fan, Y. Ma, J. Liang, X. Wang, Y. Song, S. Chen, Fluorescent sensing of sulfide ions based on papain-directed gold nanoclusters. Sens. Actuators B 235, 162–169 (2016)

    Article  CAS  Google Scholar 

  29. B. Dalkiran, C. Kaçar, P.E. Erden, E. Kiliç, Amperometric xanthine biosensors based on chitosan-Co3O4-multiwall carbon nanotube modified glassy carbon electrode. Sens. Actuators B 200, 83–91 (2014)

    Article  CAS  Google Scholar 

  30. Y. Haldorai, J.Y. Kim, A.T.E. Vilian, N.S. Heo, Y.S. Huh, Y. Han, An enzyme-free electrochemical sensor based on reduced graphene oxide/Co3O4 nanospindle composite for sensitive detection of nitrite. Sens. Actuators B 227, 92–99 (2016)

    Article  CAS  Google Scholar 

  31. T. Zhou, P. Lu, Z. Zhang, Q. Wang, A. Umar, Perforated Co3O4 nanoneedles assembled in chrysanthemum-like Co3O4 structures for ultra-high sensitive hydrazine chemical sensor. Sens. Actuators B 235, 457–465 (2016)

    Article  CAS  Google Scholar 

  32. L. Li, C. Zhang, R. Zhang, X. Gao, S. He, M. Liu, X. Li, W. Chen, 2D ultrathin Co3O4 nanosheet array deposited on 3D carbon foam for enhanced ethanol gas sensing application. Sens. Actuators B 244, 664–672 (2017)

    Article  CAS  Google Scholar 

  33. J. Kim, S.J. Lee, P. Biswas, T.I. Lee, J. Myoung, Solution-processed n-ZnO nanorod/p-Co3O4 nanoplate heterojunction light-emitting diode. Appl. Surf. Sci. 406, 192–198 (2017)

    Article  CAS  Google Scholar 

  34. X. Qing, S. Liu, K. Huang, K. Lv, Y. Yang, Z. Lu, D. Fang, X. Liang, Facile synthesis of Co3O4 nanoflowers grown on Ni foam with superior electrochemical performance. Electrochim. Acta 14, 4985–4991 (2011)

    Article  CAS  Google Scholar 

  35. Z.H. Ibupoto, N. Jamal, K. Khun, M. Willander, Development of a disposable potentiometric antibody immobilized ZnO nanotubes based sensor for the detection of C-reactive protein. Sens. Actuators B 166, 809–814 (2012)

    Article  CAS  Google Scholar 

  36. Z.H. Ibupoto, K. Khun, J. Lu, M. Willander, The synthesis of CuO nanoleaves, structural characterization, and their glucose sensing application. Appl. Phys. Lett. 102, 103701 (2013)

    Article  CAS  Google Scholar 

  37. M. Hussain, Z.H. Ibupoto, M.A. Abbasi, O. Nur, M. Willander, Synthesis of three dimensional nickel cobalt oxide nanoneedles on nickel foam, their characterization and glucose sensing application. J. Electro Chem. 717–718, 78–82 (2014)

    Article  CAS  Google Scholar 

  38. S. Roy, R. Bajpai, D.S. Misra, J.A. McLaughlin, S.S. Roy, N. Soin, Graphene oxide for electrochemical sensing applications. J. Mater. Chem. 21, 14725–14731 (2011)

    Article  CAS  Google Scholar 

  39. X. Chen, J. Zhu, Z. Chen, C. Xu, Y. Wang, C. Yao, A novel bienzyme glucose biosensor based on three-layer Au–Fe3O4@SiO2 magnetic nanocomposite. Sens. Actuators B 159, 220–228 (2011)

    Article  CAS  Google Scholar 

  40. J.C. Chou, S.H. Lin, T.Y. Lai, P.Y. Kuo, C.H. Lai, Y.H. Nien, T.Y. Su, A facile fabrication of a potentiometric arrayed glucose biosensor based on Nafion-GOx/GO/AZO. Sensors 20(4), 964 (2020)

    Article  CAS  Google Scholar 

  41. S.M.U. Ali, O. Nur, M. Willander, B. Danielsson, A fast and sensitive potentiometric glucose microsensor based on glucose oxidase coated ZnO nanowires grown on a thin silver wire. Sens. Actuators B 145, 869–874 (2010)

    Article  CAS  Google Scholar 

  42. H.A. Wahab, A.A. Salama, A.A.E. Saeid, M. Willander, O. Nur, I.K. Battisha, Zinc oxide nano-rods based glucose biosensor devices fabrication. Results Phys. 9, 809–814 42 (2018)

  43. W. Ngeontae, W. Janrungroatsakul, P. Maneewattanapinyo, S. Ekgasit, W. Aeungmaitrepirom, T. Tuntulani, Novel potentiometric approach in glucose biosensor using silver nanoparticles as redox marker. Sens. Actuators B 137, 320–326 (2009)

    Article  CAS  Google Scholar 

  44. S. Widayani, T. Yanti, T.D.K. Wungu, Preliminary study of molecularly imprinted polymer-based potentiometric sensor for glucose. Procedia Eng. 170, 84–87 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We extend our sincere appreciation to the Researchers Supporting Project (RSP-2022/79) at King Saud University, Riyadh, Saudi Arabia, for partial funding of this work. We would like to thank the platform “Microscopies, Microprobes and Metallography (3 M)” (Institut Jean Lamour, IJL, Nancy, France) for providing access to SEM facilities.

Author information

Authors and Affiliations

Authors

Contributions

MDA did electrochemical measurements. AA discussed the electrochemical results. AN partially supervised and finance the work. SSM wrote the first draft of the manuscript. AAS did XRD measurement. UA did EIS measurement and analyzed the results. MHI synthesized materials. ABM partially supervised the work. AT did XRD analysis. MT edited the draft of the manuscript. BV did SEM measurement.  ZHI supervised the work and proofread the manuscript.

Corresponding authors

Correspondence to Ayman Nafady, Matteo Tonezzer or Zafar Hussain Ibupoto.

Ethics declarations

Conflict of interest

The Authors declare that there is no conflict of interest in this research work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albaqami, M.D., Alothman, A.A., Nafady, A. et al. Utilization of polyvinyl amine hydrolysis product in enhancing the catalytic properties of Co3O4 nanowires: toward potentiometric glucose bio-sensing application. J Mater Sci: Mater Electron 33, 11555–11568 (2022). https://doi.org/10.1007/s10854-022-08128-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08128-6

Navigation