Skip to main content
Log in

The effect of post-deposition annealing on the chemical, structural and electrical properties of Al/ZrO2/La2O3/ZrO2/Al high-k nanolaminated MIM capacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The metal-insulator-metal (MIM) is being used as the potential device in the research interest of modern materials for nanoelectronics applications in semiconductor industries. In this context, the chemical, structural and electrical properties of plasma-enhance atomic layer deposition (PEALD) deposited ZrO2/La2O3/ZrO2 (ZLZ) nanolaminates at low substrate temperature have been studied and compared with, 300 °C, 400 °C, and 500 °C annealed ZLZ nanolaminates. The Tetrakis-(ethylmethylamido) zirconium-IV and Tris-(cyclopentadienyl) lanthanum-III were used as precursors for the zirconium and lanthanum whereas, O2 plasma was utilized as the oxidizing agent in each PEALD cycle. Root-mean-square (RMS) surface roughness was determined using atomic force microscopy. The x-ray photoelectron spectroscopy and x-ray diffraction measurements were used to investigate the effect of post-deposition annealing on the phase change of ZLZ nanolaminates. The film annealed at 400 °C in an atmospheric environment gives the stable phase formation of the pyrochlore phase of La2Zr2O7. This stable phase formation of 400 °C annealed Al/ZLZ/Al MIM capacitor provides the lowest leakage current density of 6.20 × 10− 7 A/cm2 at 1 V compared to the as-deposited films. The barrier height of 0.42 eV for this MIM capacitor was extracted from the Fowler-Northeim (FN) tunneling model. The obtained results of PEALD nanolaminated high-k MIM capacitors having a controlled phase indicate the potential use for nanoelectronics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data underlying this article are available in the article.

Code availability

Not applicable.

References

  1. B. Zhu, X. Wu, W. Liu, S. Ding, D.W. Zhang, Z. Fan, Nanoscale Res. Lett. 14, 53 (2019)

    Article  Google Scholar 

  2. S. Khademinia, M. Behzad, Int. Nano Lett. 5, 101–107 (2015)

    Article  Google Scholar 

  3. T. Onaya, T. Nabatame, T. Sawada, A. Ogura, Thin Solid Films 655, 48–53 (2018)

    Article  CAS  Google Scholar 

  4. C. Lin, Y. Wu, S. Member, R. Jiang, M. Yu, IEEE Electron. Device Lett. 34, 1418–1420 (2013)

    Article  CAS  Google Scholar 

  5. A.A. Kareem, Mater. Sci.-Pol. 35(4), 755–759 (2017)

    Article  CAS  Google Scholar 

  6. T. Onaya, T. Nabatame, T. Sawada, K. Kurishima, N. Sawamoto, A. Ohi, T. Chikyow, A. Ogura, ECS Trans. 75(8), 667–674 (2016)

    Article  CAS  Google Scholar 

  7. S.H. Lin, K.C. Chiang, A. Chin, F.S. Yeh, IEEE Electron. Device Lett. 30, 715–717 (2009)

    Article  CAS  Google Scholar 

  8. J. Mu, X. Chou, Z. Ma, J. He, J. Xiong, Micromachines 9, 69 (2018)

    Article  Google Scholar 

  9. S. Patil, V. Barhate, A. Mahajan, H. Xu, Md Rasadujjaman, J. Zhang, Int. J. Mod. Phys. B 35, 14–16 2140045 (2021)

    Article  Google Scholar 

  10. J. Azadmanjiri, C. Berndt, J. Wang, A. Kapoor, J. Mater. Chem. A 2, 3695–3708 (2014)

    Article  CAS  Google Scholar 

  11. J. Azadmanjiri, C.C. Berndt, J. Wang, RSC Adv. 6, 109361–109385 (2016)

    Article  CAS  Google Scholar 

  12. H. Zhang, R. Solanki, J. Electrochem. Soc. 148(4), F63–F66 (2001)

    Article  CAS  Google Scholar 

  13. R. Padmanabhan, N. Bhat, S. Member, S. Mohan, IEEE Trans. Electron. Devices 59, 1364–1370 (2012)

    Article  CAS  Google Scholar 

  14. H. Zhang, R. Solanki, B. Roberds, G. Bai, I. Banerjee, J. Appl. Phys. 87, 1921 (2000)

    Article  CAS  Google Scholar 

  15. J. Yota, H. Shen, R. Ramanathan, J. Vacuum Sci. Technol. A 31, 01A134 (2015)

    Article  Google Scholar 

  16. B. Zhong, W.L. Daniel, Z. Zhang, S.A. Campbell, W.L. Gladfelter, Chem. Vapor Depos. 12, 143–150 (2006)

    Article  CAS  Google Scholar 

  17. V. Barhate, K. Agrawal, V. Patil, S. Patil, A. Mahajan, Int. J. Mod. Phys. B 32, 1–5 (2018)

    Article  Google Scholar 

  18. V.S. Patil, K.S. Agrawal, A.G. Khairnar, B.J. Thibeault, A.M. Mahajan, Mater. Sci. Semicond. Process. 56, 277–281 (2016)

    Article  CAS  Google Scholar 

  19. K.S. Agrawal, V.N. Barhate, V.S. Patil, L.S. Patil, A.M. Mahajan, Appl. Phys. A 126, 650 (2020)

    Article  CAS  Google Scholar 

  20. J. Niinistö, M. Putkonen, L. Niinistö, K. Kukli, M. Ritala, M. Leskela, J. Appl. Phys. 95, 84 (2004)

    Article  Google Scholar 

  21. X. Zhao, D. Vanderbilt, Phys. Rev. B 65, 075105 (2002)

    Article  Google Scholar 

  22. K.N. Woods, T.-H. Chiang, P.N. Plassmeyer, M.G. Kast, A.C. Lygo, A.K. Grealish, S.W. Boettcher, C.J. Page, ACS Appl. Mater. Interfaces 9, 10897–10903 (2017)

    Article  CAS  Google Scholar 

  23. V. Patil, K. Agrawal, V. Barhate, A. Mahajan, XPS study of homemade plasma enhanced atomic layer deposited La2O3/ZrO2 Bilayer thin films. Semicond. Sci. Technol. 34, 034004 (2019)

    Article  CAS  Google Scholar 

  24. H. Wong, H. Iwai, K. Kakushima, B.L. Yang, P.K. Chu, J. Electrochem. Soc. 157(2), G49–G52 (2010)

    Article  CAS  Google Scholar 

  25. A. Bellucci, M. Mastellone, S. Orlando, M. Girolami, A. Generosi, B. Paci, P. Soltani, A. Mezzi, S. Kaciulis, R. Polini, D.M. Trucchi, Appl. Surf. Sci. 0169–4332, 30261–30262 (2019)

    Google Scholar 

  26. X.P.S. Thermo Scientific (2021). https://xpssimplified.com/elements/lanthanum.php

  27. E. Beche, G. Peraudeau, V. Flaud, D. Perarnau, Surf. Interface Anal. 44, 1045–1050 (2012)

    Article  CAS  Google Scholar 

  28. W. Han, B. Ding, M. Park, F. Cui, Z.K. Ghouri, P.S. Saud, H.Y. Kim, Nanoscale 7, 34, 14125–14548 (2015)

    Article  Google Scholar 

  29. M.Y. Yang, C.H. Huang, A. Chin, C. Zhu, M.F. Li, D. Kwong, IEEE Electron. Device Lett. 24, 306–308 (2003)

    Article  Google Scholar 

  30. E.A. Bovina, J.V. Tarasova, F.K. Chibirova, J. Phys.: Conf. Ser. 291, 012037 (2011)

    Google Scholar 

  31. S. Ding, H. Hu, H.F. Lim, S.J. Kim, X.F. Yu, C. Zhu, M.F. Li, B.J. Cho, D.S.H. Chan, S.C. Rustagi, M.B. Yu, A. Chin, D. Kwong, IEEE Electron. Device Lett. 24, 730–732 (2003)

    Article  CAS  Google Scholar 

  32. B. Paul, K. Singh, T. Jaroń, A. Roy, A. Chowdhury, J. Alloys Compd. 686, 130–136 (2016)

    Article  CAS  Google Scholar 

  33. S. Ponkumar, K. Janaki, D. Prakash Babu, K. Munirathnam, M. Madesh Kumar, AIP Conf. Proc. 1966, 0200096 (2018)

    Google Scholar 

  34. J.M. Gaskell, A.C. Jones, H.C. Aspinall, S. Taylor, P. Taechakumput, P.R. Chalker, P.N. Heys, R. Odedra, Appl. Phys. Lett. 112912, 89–92 (2007)

    Google Scholar 

  35. H.S. Chen, R.V. Kumar, B.A. Glowacki, Mater. Chem. Phys. 122, 305–310 (2010)

    Article  CAS  Google Scholar 

  36. M.M. Rahman, J.-G. Kim, D.-H. Kim, T.-W. Kim, Micromachines 10(6), 361 (2019)

    Article  Google Scholar 

  37. S. Banerjee, P. Zhang, AIP Adv. 9, 085302–085306 (2019)

    Article  Google Scholar 

  38. E.W. Cowell, S.W. Muir, D.A. Keszler, J.F. Wager, J. Appl. Phys. 114, 213703–213707 (2013)

    Article  Google Scholar 

  39. K.C. Chiang, A. Chin, C.H. Lai, W.J. Chen, C.F. Cheng, B.F. Hung, C.C. Liao, VLSI Symp. Tech. Dig. 1469213, 62–63 (2005)

    Google Scholar 

  40. C.H. Cheng, S.H. Lin, K.Y. Jhou, W.J. Chen, C.P. Chou, F.S. Yeh, J. Hu, M. Hwang, T. Arikado, S.P. McAlister, A. Chin, IEEE Electron. Device Lett. 29, 8 (2008)

    Article  Google Scholar 

  41. J.-L. Mondal, S.-J. Her, Shih, T.-M. Pana, J. Electrochem. Soc. 159(6), H589–H594 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge with thanks the financial support of the Council of Scientific & Industrial Research (CSIR), and UGC-SAP DRS-III, New Delhi for conducting this work. The authors acknowledge to Indian Nanoelectronics User Program (INUP) of IIT, Bombay for providing necessary characterization facilities. One of the authors Sumit R. Patil is thankful to DST-INSPIRE for providing research fellowships.

Funding

Information given in the Acknowledgments section.

Author information

Authors and Affiliations

Authors

Contributions

SRP: conceptualization, methodology, investigation, writing- original draft preparation, writing- reviewing and editing formal analysis; VNB: methodology, reviewing and editing, data curation, formal analysis; VSP: validation, software, visualization; KSA: visualization, investigation, writing- reviewing and editing, data curation, formal analysis; AMM: supervision, writing- reviewing and Editing.

Corresponding author

Correspondence to Ashok M. Mahajan.

Ethics declarations

Conflict of interest

Sumit R. Patil, Viral N. Barhate, Vilas S. Patil, Khushabu S. Agrawal, and Ashok M. Mahajan declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, S.R., Barhate, V.N., Patil, V.S. et al. The effect of post-deposition annealing on the chemical, structural and electrical properties of Al/ZrO2/La2O3/ZrO2/Al high-k nanolaminated MIM capacitors. J Mater Sci: Mater Electron 33, 11227–11235 (2022). https://doi.org/10.1007/s10854-022-08097-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08097-w

Navigation