Skip to main content
Log in

Laser annealing of Au/HfO2 bi-layers to fabricate Au nanoparticles without altering the phase of HfO2 for applications in SERS and memory devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report an athermal laser annealing technique to fabricate a high-density array of gold nanoparticles on the surface of hafnium oxide thin films without altering the phase of HfO2. Au (~ 5 nm) films deposited on amorphous HfO2 (~ 10 nm) are subjected to laser annealing by using an Excimer laser (248 nm) to produce Au nanoparticles. It is important to note that the usual thermal methods would change the phase of the HfO2. It is observed that the size of the spherical Au nanoparticles decreases and their surface density increases as the number of laser pulses increases. These Au nanoparticles has induced a significant enhancement in the Raman signature of the standard R6G dye. Further, Metal–Oxide–Semiconductor capacitors were fabricated by depositing another layer of HfO2 followed by metal contacts on the surface of these nanoparticles. The leakage current conduction through the gate oxide with and without embedded nanoparticles has been studied using the Poole–Frenkel and Fowler–Nordheim tunneling mechanisms by examining the leakage current–voltage characteristics. PF tunneling is found to be prominent in these MOS structures with Au nanoparticles, which is attributed to the possible charge trapping by the embedded Au nanoparticles. The capacitance–voltage (C–V) characteristics show a significant broadening in the hysteresis loop indicating the improvement in the storage capacity of these MOS capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.S. Meena, S.M. Sze, U. Chand, T.-Y. Tseng, Overview of emerging nonvolatile memory technologies. Nanoscale Res Lett. 9, 526 (2014). https://doi.org/10.1186/1556-276X-9-526

    Article  Google Scholar 

  2. S. Wang, C. He, J. Tang, Lu. Xiaobo, C. Shen, Yu. Hua, Du. Luojun, J. Li, R. Yang, D. Shi, G. Zhang, New floating gate memory with excellent retention characteristics. Adv. Electron. Mater. 5, 1800726 (2019). https://doi.org/10.1002/aelm.201970018

    Article  Google Scholar 

  3. J. Li, F. Yan, Solution-processable low-voltage and flexible floating-gate memories based on an n-Type polymer semiconductor and high-k polymer gate dielectrics. ACS Appl. Mater. Interfaces 6, 12815–12820 (2014). https://doi.org/10.1021/am5028007

    Article  CAS  Google Scholar 

  4. J. M. Rabaey, Digital integrated circuits: a design perspective, Prentice Hall (1996).

  5. G. Wilk, R.M. Wallace, J.M. Anthony, High-k gate dielectrics: current status and materials properties considerations. J. Appl. Phys. 89, 5243 (2001). https://doi.org/10.1063/1.1361065

    Article  CAS  Google Scholar 

  6. M.T. Bohr, R.S. Chau, T. Ghani, K. Mistry, The high-k solution. IEEE Spectr. 44(10), 29–35 (2007). https://doi.org/10.1109/MSPEC.2007.4337663

    Article  Google Scholar 

  7. S. Miyazaki, Characterization of high-k gate dielectric/silicon interfaces. Appl. Surf. Sci. 190, 66–74 (2002). https://doi.org/10.1016/S0169-4332(01)00841-8

    Article  CAS  Google Scholar 

  8. G.R. Berdiyorov, H. Hamoudi, Effect of insulator thickness on the electronic transport through CNT-HfO2-Au junction for optical rectenna applications. Surf Interf 22, 100823 (2021). https://doi.org/10.1016/j.surfin.2020.100823

    Article  CAS  Google Scholar 

  9. J.H. Choi, Y. Mao, J.P. Chang, Development of Hafnium based high-k materials: a review. Mater. Sci. Eng. R 72, 97–136 (2011). https://doi.org/10.1016/j.mser.2010.12.001

    Article  CAS  Google Scholar 

  10. G. Vescio, G. Martin, A. Crespo-Yepes, S. Claramunt, D. Alonso, J. Lopez-Vidrier, S. Estrade, M. Porti, R. Rodriguez, F. Peiro, A. Cornet, A. Cirera, M. Nafria, Low-power, high-performance, non-volatile inkjet-printed HfO2-based resistive random access memory: from device to nanoscale characterization. ACS Appl. Mater. Interf 11(26), 23659–23666 (2019). https://doi.org/10.1021/acsami.9b01731

    Article  CAS  Google Scholar 

  11. C.L. Platt, B. Dieny, A.E. Berkowitz, Spin-dependent tunneling in HfO2 tunnel junctions. Appl. Phys. Lett. 69, 2291 (1996). https://doi.org/10.1063/1.117537

    Article  CAS  Google Scholar 

  12. C.J. Cochrane, P.M. Lenahan, J.P. Campbell, G. Bersuker, A. Neugroschel, Observation of negative bias stressing interface trapping centers in metal gate hafnium oxide field effect transistors using spin dependent recombination. Appl. Phys. Lett. 90, 123502 (2007). https://doi.org/10.1063/1.2715141

    Article  CAS  Google Scholar 

  13. S.-L. Jiang, X.-J. Li, Y.-W. Liu, Xi. Chen, Q.-Q. Liu, G. Han, G. Yang, D.-W. Wang, J.-Y. Zhang, J. Teng, Yu. Guang-Hua, Thermally stable anomalous Hall behavior in perpendicular Co/Pt multilayers sandwiched by HfO2 layers. Appl. Surf. Sci. 360, 758–761 (2016). https://doi.org/10.1016/j.apsusc.2015.11.060

    Article  CAS  Google Scholar 

  14. X.L. Zhang, L.F. Liu, W.M. Liu, Quantum anomalous hall effect and tunable topological states in 3d transition metals doped silicene. Sci Rep 3, 2908 (2013). https://doi.org/10.1038/srep02908

    Article  Google Scholar 

  15. Z.F. Jiang, R.D. Li, S.-C. Zhang, W.M. Liu, Semiclassical time evolution of the holes from Luttinger Hamiltonian. Physical Review B 72, 045201 (2005). https://doi.org/10.1103/PhysRevB.72.045201

    Article  CAS  Google Scholar 

  16. Y.-H. Chen, H.-S. Tao, D.-X. Yao, W.-M. Liu, Kondo metal and ferrimagnetic insulator on the triangular kagome lattice. Phys. Rev. Lett. 108, 246402 (2012). https://doi.org/10.1103/PhysRevLett.108.246402

    Article  CAS  Google Scholar 

  17. R. Chau, S. Datta, M. Doczy, J. Kavalieros, M. Metz, Extended Abstracts of International Workshop on Gate Insulator (IWGI), Japan, Tokyo, 124 (2003). https://doi.org/10.1109/IWGI.2003.159170

  18. D. Kahng, S.M. Sze, A floating gate and its application to memory devices. Bell Syst. Tech. J. 46, 1288–1295 (1967). https://doi.org/10.1002/j.1538-7305.1967.tb01738.x

    Article  Google Scholar 

  19. S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E.F. Crabbe, K. Chan, A silicon nanocrystals based memory. Appl. Phys. Lett. 68, 1377 (1996). https://doi.org/10.1063/1.116085

    Article  CAS  Google Scholar 

  20. W. Guan, S. Long, M. Liu, Z. Li, Hu. Yuan, Qi. Liu, Fabrication and charging characteristics of MOS capacitor structure with metal nanocrystals embedded in gate oxide. J. Phys. D: Appl. Phys. 40, 2754 (2007). https://doi.org/10.1088/0022-3727/40/9/012

    Article  CAS  Google Scholar 

  21. T. Jiang, Z. Shao, H. Fang, W. Wang, Q. Zhang, D. Wu, X. Zhang, J. Jie, High-performance nanofloating gate memory based on lead halide perovskite nanocrystals. ACS Appl. Mater. Interfaces 11(27), 24367–24376 (2019). https://doi.org/10.1021/acsami.9b03474

    Article  CAS  Google Scholar 

  22. M. Olmedo, C. Wang, K. Ryu, H. Zhou, J. Ren, N. Zhan, C. Zhou, J. Liu, Carbon nanotube memory by the self-assembly of silicon nanocrystals as charge storage nodes. ACS Nano 5(10), 7972–7977 (2011). https://doi.org/10.1021/nn202377f

    Article  CAS  Google Scholar 

  23. T.T.-J. Wang, C.-L. Chu, I.-J. Hsieh, W.-S. Tseng, Formation of iridium nanocrystals with highly thermal stability for the applications of nonvolatile memory device with excellent trapping ability. Appl. Phys. Lett. 97, 143507 (2010). https://doi.org/10.1063/1.3498049

    Article  CAS  Google Scholar 

  24. G. Chakraborty, A. Sengupta, F.G. Requejo, C.K. Sarkar, Study of the relative performance of silicon and germanium nanoparticles embedded gate oxide in metal-oxide-semiconductor memory devices. J. Appl. Phys. 109, 064504 (2011). https://doi.org/10.1063/1.3555087

    Article  CAS  Google Scholar 

  25. S. Fakher, M. Alias, P. Sayers, M. Mabrook, High capacity organic memory structures based on PVP as the insulating layer. J. Mater. Sci.: Mater. Electron. 29, 17644–17650 (2018). https://doi.org/10.1007/s10854-018-9868-4

    Article  CAS  Google Scholar 

  26. Ch. Sargentis, K. Giannakopoulos, A. Travlos, D. Tsamakis, Fabrication and electrical characterization of a MOS memory device containing self-assembled metallic nanoparticles. Physica E 38, 85–88 (2007). https://doi.org/10.1016/j.physe.2006.12.024

    Article  CAS  Google Scholar 

  27. S.A. Ng, K.A. Razak, L.P. Goh, K.Y. Cheong, P.C. Ooi, K.C. Aw, Direct formation of AuNPs thin film using thermal evaporated zinc as sacrificial template in hydrothermal method. J Mater Sci: Mater Electron 25, 2227–2236 (2014). https://doi.org/10.1007/s10854-014-1863-9

    Article  CAS  Google Scholar 

  28. S.A. Ng, K.A. Razak, K.Y. Cheong, K.C. Aw, Memory properties of Au nanoparticles prepared by tuning HAuCl4 concentration using low-temperature hydrothermal reaction. Thin Solid Films 615, 84–90 (2016). https://doi.org/10.1016/j.tsf.2016.05.003

    Article  CAS  Google Scholar 

  29. C.W. Tseng, D.C. Huang, Y.T. Tao, Azobenzene-functionalized gold nanoparticles as hybrid double-floating-gate in pentacene thin-film transistors/memories with enhanced response, retention, and memory windows. ACS Appl. Mater. Interfaces 5, 9528–9536 (2013). https://doi.org/10.1021/am4023253

    Article  CAS  Google Scholar 

  30. S. Hong, X. Li, Optimal size of gold nanoparticles for surface-enhanced Raman spectroscopy under different conditions. J. Nanomater. 2013, 790323 (2013). https://doi.org/10.1155/2013/790323

    Article  CAS  Google Scholar 

  31. G. Dawson, X. Cheng, A. Centeno, Y. Pilyugina, W. Niu, R. Liu, Excellent surface enhanced Raman properties of titanate nanotube-dopamine-Ag triad through efficient substrate design and LSPR matching. J Mater Sci: Mater Electron 32, 21603–21610 (2021). https://doi.org/10.1007/s10854-021-06669-w

    Article  CAS  Google Scholar 

  32. M.S.S. Bharati, V.R. Soma, Flexible SERS Substrates for Hazardous Materials Detection: Recent Advances. Optoelectron Adv 4, 210048 (2021). https://doi.org/10.29026/oea.2021.210048

    Article  Google Scholar 

  33. P.G. Bharti, R.K. Soni, R. Raman, Graphene oxide–silver nanocomposite SERS substrate for sensitive detection of nitro explosives. J Mater Sci Mater Electron 31, 1094–1104 (2020). https://doi.org/10.1007/s10854-019-02621-1

    Article  CAS  Google Scholar 

  34. S.S.B. Moram, C. Byram, S.N. Shibu, B.M. Chilukamarri, V.R. Soma, Ag/Au nanoparticle-loaded paper-based versatile surface-enhanced Raman spectroscopy substrates for multiple explosives detection. ACS Omega 3(7), 8190–8201 (2018). https://doi.org/10.1021/acsomega.8b01318

    Article  CAS  Google Scholar 

  35. V.S. Vendamani, S.V.S.N. Rao, S.V. Rao, D. Kanjilal, A.P. Pathak, Three-dimensional hybrid silicon nanostructures for surface enhanced Raman spectroscopy based molecular detection. J. Appl. Phys. 123, 014301 (2018). https://doi.org/10.1063/1.5000994

    Article  CAS  Google Scholar 

  36. S. Calamak, K. Ulubayram, Polyethylenimine-mediated gold nanoparticle arrays with tunable electric field enhancement for plasmonic applications. J. Mater. Sci.: Mater. Electron. 30, 10013–10023 (2019). https://doi.org/10.1007/s10854-019-01344-7

    Article  CAS  Google Scholar 

  37. I. Angela, Lopez-Lorente, recent developments on gold nanostructures for surface enhanced Raman spectroscopy: particle shape, substrates and analytical applications. A review. Analytica Chimica Acta 1168, 338474 (2021). https://doi.org/10.1016/j.aca.2021.338474

    Article  CAS  Google Scholar 

  38. V.S. Vendamani, S.V.S.N. Rao, A.P. Pathak, S.V. Rao, Robust and cost-effective silver dendritic nanostructures for SERS-based trace detection of RDX and ammonium nitrate. RSC Adv. 10(73), 44747–44755 (2020). https://doi.org/10.1039/D0RA08834J

    Article  CAS  Google Scholar 

  39. V.S. Vendamani, R. Beeram, S.V.S.N. Rao, A.P. Pathak, S.V. Rao, Trace level detection of explosives and pesticides using robust, low-cost, free-standing silver nanoparticles decorated porous silicon. Opt. Express 29, 30045–30061 (2021). https://doi.org/10.1364/OE.434275

    Article  CAS  Google Scholar 

  40. S. Horikoshi, N. Matsumoto, Y. Omata, T. Kato, Growth of Au nanoparticle films and the effect of nanoparticle shape on plasmon peak wavelength. J. Appl. Phys. 115, 193506 (2014). https://doi.org/10.1063/1.4876263

    Article  CAS  Google Scholar 

  41. M. Mederos, S.N.M. Mestanza, R. Lang, I. Doi, J.A. Diniz, Germanium nanoparticles grown at different deposition times for memory device applications. Thin Solid Films 611, 39–45 (2016). https://doi.org/10.1016/j.tsf.2016.05.026

    Article  CAS  Google Scholar 

  42. Ch. Sargentis, K. Giannakopoulos, A. Travlos, D. Tsamakis, Study of charge storage characteristics of memory devices embedded with metallic nanoparticles. Superlattices Microstruct. 44, 483–488 (2008). https://doi.org/10.1016/j.spmi.2008.03.003

    Article  CAS  Google Scholar 

  43. Y.K. Mishra, S. Mohapatra, D. Kabiraj, B. Mohanta, N.P. Lalla, J.C. Pivin, D.K. Avasthi, Synthesis and characterization of Ag nanoparticles in silica matrix by atom beam sputtering. Scripta Mater. 56, 629–632 (2007). https://doi.org/10.1016/j.scriptamat.2006.12.008

    Article  CAS  Google Scholar 

  44. M. Sriubas, V. Kavaliunas, K. Bockute, P. Palevicius, M. Kaminskas, Z. Rinkevicius, M. Ragulskis, G. Laukaitis, Formation of Au nanostructures on the surfaces of annealed TiO2 thin films. Surfaces and Interfaces 25, 101239 (2021). https://doi.org/10.1016/j.surfin.2021.101239

    Article  CAS  Google Scholar 

  45. Y.K. Mishra, D.K. Avasthi, P.K. Kulriya, F. Singh, D. Kabiraj, A. Tripathi, J.C. Pivin, I.S. Bayer, A. Biswas, Controlled growth of gold nanoparticles induced by ion irradiation: an in situ x-ray diffraction study. Appl. Phys. Lett. 90, 073110 (2007). https://doi.org/10.1063/1.2642824

    Article  CAS  Google Scholar 

  46. D. Munthala, A. Mangababu, S.V.S.N. Rao, S. Pojprapai, A.P. Pathak, D.K. Avasthi, Swift heavy ion assisted growth of silver nanoparticles embedded in hafnium oxide matrix. J. Appl. Phys. 130, 044301 (2021). https://doi.org/10.1063/5.0054846

    Article  CAS  Google Scholar 

  47. R.K. Gupta, D.Y. Kusuma, P.S. Lee, M.P. Srinivasan, Covalent Assembly of Gold Nanoparticles for Nonvolatile Memory Applications. ACS Appl. Mater. Interfaces 3, 4619–4625 (2011). https://doi.org/10.1021/am201022v

    Article  CAS  Google Scholar 

  48. V. Mikhelashvili, B. Meyler, S. Yoffis, J. Salzman, M. Garbrecht, T. Cohen-Hyams, W.D. Kaplan, G. Eisenstein, A nonvolatile memory capacitor based on Au nanocrystals with HfO2 tunneling and blocking layers. Appl. Phys. Lett. 95, 023104 (2009). https://doi.org/10.1063/1.3176411

    Article  CAS  Google Scholar 

  49. X. Feng, S. Dong, H. Wong, D. Yu, K.L. Pey, K. Shubhakar, W.S. Lau, Effects of thermal annealing on the charge localization characteristics of HfO2/Au/HfO2 stack. Microelectron Reliability 61, 78–81 (2016). https://doi.org/10.1016/j.microrel.2016.02.012

    Article  CAS  Google Scholar 

  50. A. Mangababu, N. Arun, K.V. Kumar, A.P. Pathak, S.V.S.N. Rao, Metal nanoparticles in dielectric media: physical vapor deposited HfO2 & Ag multilayers for MOS device and SPR applications. AIP Conf Proc 2265, 030271 (2020). https://doi.org/10.1063/5.0016821

    Article  CAS  Google Scholar 

  51. A. Srivastava, R.K. Nahar, C.K. Sarkar, Study of the effect of thermal annealing on high-k hafnium oxide thin film structure and electrical properties of MOS and MIM devices. J Mater Sci: Mater Electron 22, 882–889 (2011). https://doi.org/10.1007/s10854-010-0230-8

    Article  CAS  Google Scholar 

  52. M. Dhanunjaya, S.A. Khan, A.P. Pathak, D.K. Avasthi, S.V.S.N. Rao, Grain fragmentation and phase transformations in hafnium oxide induced by swift heavy ion irradiation. J. Phys. D: Appl. Phys. 50, 505301 (2017). https://doi.org/10.1088/1361-6463/aa9723

    Article  CAS  Google Scholar 

  53. N. Manikanthababu, S. Vajandar, N. Arun, A.P. Pathak, K. Asokan, T. Osipowicz, T. Basu, S.V.S.N. Rao, Electronic excitation induced defect dynamics in HfO2 based MOS devices investigated by in-situ electrical measurements. Appl. Phys. Lett. 112, 131601 (2018). https://doi.org/10.1063/1.5012269

    Article  CAS  Google Scholar 

  54. N. Manikanthababu, T. Basu, S. Vajandar, S.V.S.N. Rao, B.K. Panigrahi, T. Osipowicz, A.P. Pathak, Radiation tolerance, charge trapping, and defect dynamics studies of ALD-grown Al/HfO2/Si nMOSCAPs. J Mater Sci Mater Electron 31, 3312–3322 (2020). https://doi.org/10.1007/s10854-020-02879-w

    Article  CAS  Google Scholar 

  55. N. Arun, L.D.V. Sangani, K.V. Kumar, A. Mangababu, M.G. Krishna, A.P. Pathak, S.V.S.N. Rao, Effects of swift heavy ion irradiation on the performance of HfO2-based resistive random access memory devices. J Mater Sci: Mater Electron 32, 2973–2986 (2021). https://doi.org/10.1007/s10854-020-05049-0

    Article  CAS  Google Scholar 

  56. A. Vinod, M.S. Rathore, S.R. Nelamarri, Role of annealing temperature on charge storage characteristics of Au nanocrystals with HfO2 tunneling and blocking layers. Superlattices Microstruct 120, 616–628 (2018). https://doi.org/10.1016/j.spmi.2018.04.052

    Article  CAS  Google Scholar 

  57. N. Kalfagiannis, A. Siozios, D.V. Bellas, D. Toliopoulos, L. Bowen, N. Pliatsikas, W.M. Cranton, C. Kosmidis, D.C. Koutsogeorgis, E. Lidorikis, P. Patsalas, Selective modification of nanoparticle arrays by laser-induced self-assembly (MONA-LISA): putting control into bottom-up plasmonic nanostructuring. Nanoscale 8, 8236–8244 (2016). https://doi.org/10.1039/C5NR09192F

    Article  CAS  Google Scholar 

  58. L. Kastanis, J.L. Spear, Ch. Sargentis, N. Konofaos, D. Tsamakis, D.C. Koutsogeorgis, E.K. Evangelou, Memory performance of MOS structure embedded with laser annealed gold NCs. Solid State Electron. 148, 63–69 (2018). https://doi.org/10.1016/j.sse.2018.07.012

    Article  CAS  Google Scholar 

  59. A. Siozios, D.C. Koutsogeorgis, E. Lidorikis, G.P. Dimitrakopulos, Th. Kehagias, H. Zoubos, Ph. Komninou, W.M. Cranton, C. Kosmidis, P. Patsalas, Optical encoding by plasmon-based patterning: hard and inorganic materials become photosensitive. Nano Lett. 12(1), 259–263 (2012). https://doi.org/10.1021/nl2034738

    Article  CAS  Google Scholar 

  60. E.C. Le Ru, E. Blackie, M. Meyer, P.G. Etchegoin, Surface enhanced Raman scattering enhancement factors: a comprehensive study. J. Phys. Chem. C 111(37), 13794–13803 (2007). https://doi.org/10.1021/jp0687908

    Article  CAS  Google Scholar 

  61. K.Y. Cheong, J.H. Moon, H.J. Kim, W. Bahng, Nam-Kyun Kim, Current conduction mechanisms in atomic-layer-deposited HfO2/nitrided SiO2 stacked gate on 4H silicon carbide. J. Appl. Phys. 103, 084113 (2008). https://doi.org/10.1063/1.2908870

    Article  CAS  Google Scholar 

  62. J.C. Ranuarez, M.J. Deen, C.-H. Chen, A review of gate tunneling current in MOS devices. Microele. Reliab. 46(12), 1939–1956 (2006). https://doi.org/10.1016/j.microrel.2005.12.006

    Article  Google Scholar 

  63. M. Lenzlinger, E.H. Snow, Fowler-Nordheim tunneling into thermally grown SiO2. J. Appl. Phys. 40, 278–283 (1969). https://doi.org/10.1063/1.1657043

    Article  CAS  Google Scholar 

  64. Z. Liu, C. Lee, V. Narayanan, G. Pei, E.C. Kan, Metal nanocrystal memories. I. Device design and fabrication. IEEE Transact Electron Dev 49, 1606–1613 (2002). https://doi.org/10.1109/TED.2002.802617

    Article  CAS  Google Scholar 

  65. H. Chen, Ye. Zhou, S.-T. Han, Recent advances in metal nanoparticle-based floating gate memory. Nano Select 2, 1245–1265 (2021). https://doi.org/10.1002/nano.202000268

    Article  CAS  Google Scholar 

  66. A. Paskaleva, A.J. Bauer, M. Lemberger, S. Zucher, Different current conduction mechanisms through thin high-k HfxTiySizO films due to the varying Hf to Ti ratio. J. Appl. Phys. 95, 5583 (2004). https://doi.org/10.1063/1.1702101

    Article  CAS  Google Scholar 

  67. L. Esaki, Long journey into tunneling. Science 183, 1149 (1974). https://doi.org/10.1126/science.183.4130.1149

    Article  CAS  Google Scholar 

Download references

Acknowledgements

KVK thanks UGC-CSIR, India for the fellowship. We thank DST-PURSE, India for financial support to establish the e-beam deposition system. We would like to thank Prof. Venugopal Rao Soma, ACRHEM, UOH for providing access to their Raman spectrometer and for discussions. We acknowledge the support of UGC-NRC, School of Physics and the Centre for Nanotechnology (CFN), UOH by providing access to necessary experimental facilities.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by KVK, JPG, KRK, KCJR, and SVSNR. The first draft of the manuscript was written by KVK and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to K. C. James Raju or S. V. S. Nageswara Rao.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. We hereby declare that the manuscript complies with all ethical values and standards.

Data availability

It is available and can be produced anytime.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, K.V., Goud, J.P., Kumar, K.R. et al. Laser annealing of Au/HfO2 bi-layers to fabricate Au nanoparticles without altering the phase of HfO2 for applications in SERS and memory devices. J Mater Sci: Mater Electron 33, 6657–6669 (2022). https://doi.org/10.1007/s10854-022-07840-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07840-7

Navigation