Skip to main content

Advertisement

Log in

Electromagnetic wave absorption performance and mechanism of Co/C composites derived from different cobalt source ZIF-67: a comparative study

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The preparation of mesoporous carbon-based composites derived from metal-organic frameworks (MOFs) has become a new strategy for the fabrication of electromagnetic wave (EMW) absorption materials. However, the EMW absorption effect of metal ion sources preparing precursor MOFs on the final carbonized mesoporous carbon-based composites has not been explored in detail yet. In this work, two kinds of ZIF-67s were synthesized using different cobalt sources (CoCl2·6H2O and Co(NO3)2·6H2O), respectively. It is found that the two ZIF-67s have different morphology and thermal stability owing to the differences in anions of cobalt sources metallic salts. And two series of mesoporous Co/C composites were further prepared by calcination of ZIF-67 at 500, 600, 700, and 800 °C, respectively. Their EMW absorption performance and corresponding mechanism were investigated and compared. Results indicate that the Co/C composites derived from different cobalt sources possess diverse microstructures and EMW absorption capabilities, which also depend on carbonization temperature. Significantly, the Co/C-1-600 and Co/C-2-700 with the loading of 30 wt% in paraffin, achieved the minimum reflection loss of − 34.80 dB and − 37.43 dB at an effective absorption bandwidth of 4.37 GHz and 3.63 GHz with an optimum matching thickness of 2 mm and 2.5 mm, respectively. The different EMW absorption performance of Co/C composites are attributed to the difference of energy loss mechanism caused by different anions in cobalt source metal salt and different calcination temperature, including electrical loss, magnetic loss, interfacial polarization loss, multiple reflection loss and impedance matching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Y. Wang, D. Chen, X. Yin, P. Xu, M. He, Hybrid of MoS2 and reduced graphene oxide: a lightweight and broadband electromagnetic wave absorber. ACS Appl. Mater. Interfaces 7(47), 26226–26234 (2015)

    Article  CAS  Google Scholar 

  2. B. Wen, C. Huan, P. Liu, Y. Zhang, Resistance gradient polymeric electromagnetic shielding composites: preparation and characterization. Polym. Compos. 40(5), 1842–1849 (2019)

    Article  CAS  Google Scholar 

  3. X. Wang, B. Wen, X. Yang, Construction of core-shell structural nickel@graphite nanoplate functional particles with high electromagnetic shielding effectiveness. Compos. B. Eng. 173, 106904 (2019)

    Article  CAS  Google Scholar 

  4. B. Wen, X. Wang, Y. Zhang, Ultrathin and anisotropic polyvinyl butyral/Ni-graphite/short-cut carbon fibre film with high electromagnetic shielding performance. Compos. Sci. Technol. 169, 127–134 (2019)

    Article  CAS  Google Scholar 

  5. Y. Dai, X. Wu, Z. Liu, H. Zhang, Z. Yu, Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption. Compos. B. Eng. 200, 108263 (2020)

    Article  CAS  Google Scholar 

  6. H. Lv, G. Ji, W. Liu, H. Zhang, Achieving hierarchical hollow carbon@Fe@Fe3O4 nanospheres with superior microwave absorption properties and lightweight features. J. Mater. Chem. C 3(39), 10232–10241 (2015)

    Article  CAS  Google Scholar 

  7. J. Liu, H. Zhang, X. Xie, R. Yang, Z. Liu, Y. Liu, Z. Yu, Multifunctional, superelastic, and lightweight MXene/polyimide aerogels. Small 14(45), e1802479 (2018)

    Article  Google Scholar 

  8. W. Chen, L. Liu, H. Zhang, Z. Yu, Highly stretchable, conductive, and hierarchical Ti3C2Tx MXene Films for efficient electromagnetic interference shielding and pressure sensing. ACS Nano 15(4), 7668–7681 (2021)

    Article  CAS  Google Scholar 

  9. F. Qin, C. Brosseau, A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. J. Appl. Phys. 111(6), 4–227 (2012)

    Article  Google Scholar 

  10. Y. Chang, C. Lin, T. Chen et al., Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams. Adv. Mater. 25(5), 756–760 (2013)

    Article  CAS  Google Scholar 

  11. L. Wang, Y. Huang, X. Sun, H. Huang, P. Liu, M. Zong, Y. Wang, Synthesis and microwave absorption enhancement of graphene@Fe3O4@SiO2@NiO nanosheet hierarchical structures. Nanoscale 6(6), 3157–3164 (2014)

    Article  CAS  Google Scholar 

  12. K. Zhang, F. Wu, J. Li, M. Sun, A. Xie, W. Dong, Networks constructed by metal organic frameworks (MOFs) and multiwall carbon nanotubes (MCNTs) for excellent electromagnetic waves absorption. Mater. Chem. Phys. 208, 198–206 (2018)

    Article  CAS  Google Scholar 

  13. Z. Lou, X. Han, J. Liu, Q. Ma, H. Yan, C. Yuan, L. Yang, H. Han, F. Weng, Y. Li, Nano-Fe3O4/bamboo bundles/phenolic resin oriented recombination ternary composite with enhanced multiple functions. Compos. B. Eng. 226, 109335 (2021)

    Article  CAS  Google Scholar 

  14. Y. Feng, W. Sun, Z. Lou, Q. Wang, Y. Zhao, Y. Li, An industrial feasible and sustainable method for preparing fiberized bamboo-derived magnetic biomass carbon. J. Mater. Sci. Mater. Electron. 32(21), 26137–26150 (2021)

    Article  Google Scholar 

  15. Z. Lou, Q. Wang, Y. Zhang, X. Zhou, R. Li, J. Liu, Y. Li, H. Lv, In-situ formation of low-dimensional, magnetic core-shell nanocrystal for electromagnetic dissipation. Compos. B. Eng. 214, 108744 (2021)

    Article  CAS  Google Scholar 

  16. M. Ranocchiari, Metal-organic frameworks: design and application. Appl. Organomet. Chem. 26(6), 320–320 (2012)

    Article  CAS  Google Scholar 

  17. J. Shu, X. Yang, X. Zhang, X. Huang, M. Cao, L. Li, H. Yang, W. Cao, Tailoring MOF-based materials to tune electromagnetic property for great microwave absorbers and devices. Carbon 162, 157–171 (2020)

    Article  CAS  Google Scholar 

  18. M. Hasanzadeh, A. Simchi, H. Shahriyari, Far, Nanoporous composites of activated carbon-metal organic frameworks for organic dye adsorption: synthesis, adsorption mechanism and kinetics studies. J. Ind. Eng. Chem. 81, 405–414 (2020)

    Article  CAS  Google Scholar 

  19. D. Liu, Y. Du, F. Wang, Y. Wang, L. Cui, H. Zhao, X. Han, MOFs-derived multi-chamber carbon microspheres with enhanced microwave absorption. Carbon 157, 478–485 (2020)

    Article  CAS  Google Scholar 

  20. X. Zhang, J. Qiao, C. Liu, F. Wang, Y. Jiang, P. Cui, Q. Wang, Z. Wang, L. Wu, J. Liu, A MOF-derived ZrO2/C nanocomposite for efficient electromagnetic wave absorption. Inorg. Chem. Front. 7(2), 385–393 (2020)

    Article  CAS  Google Scholar 

  21. J. Qiao, X. Zhang, C. Liu, L. Lyu, Y. Yang, Z. Wang, L. Wu, W. Liu, F. Wang, J. Liu, Non-magnetic bimetallic MOF-derived porous carbon-wrapped TiO2/ZrTiO4 composites for efficient electromagnetic wave absorption. Nano-micro Lett. 13(1), 75 (2021)

    Article  Google Scholar 

  22. L. Huang, C. Chen, X. Huang, S. Ruan, Y.J. Zeng, Enhanced electromagnetic absorbing performance of MOF-derived Ni/NiO/Cu@C composites. Compos. B. Eng. 164, 583–589 (2019)

    Article  CAS  Google Scholar 

  23. P. Liu, S. Gao, Y. Wang, Y. Huang, W. He, W. Huang, J. Luo, Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials. Chem. Eng. J. 381, 122653 (2020)

    Article  CAS  Google Scholar 

  24. Y. Zhang, M. Piao, H. Zhang, F. Zhang, J. Chu, X. Wang, H. Shi, C. Li, Synthesis of mesoporous hexagonal cobalt nanosheets with low permittivity for enhancing microwave absorption performances. J. Magn. Magn. Mater. 486(9), 165272 (2019)

    Article  CAS  Google Scholar 

  25. X. Zhang, G. Ji, W. Liu, B. Quan, X. Liang, C. Shang, Y. Cheng, Y. Du, Thermal conversion of an Fe3O4@metal-organic framework: a new method for an efficient Fe-Co/nanoporous carbon microwave absorbing material. Nanoscale 7(30), 12932–12942 (2015)

    Article  CAS  Google Scholar 

  26. S. Wang, Y. Lv, Y. Yao, H. Yu, G. Lu, Modulated synthesis of monodisperse MOF-5 crystals with tunable sizes and shapes. Inorg. Chem. Commun. 93, 56 (2018)

    Article  CAS  Google Scholar 

  27. B.B. Seoane, S. Castellanos, A. Dikhtiarenko, F. Kapteijn, J. Gascon, Multi-scale crystal engineering of metal organic frameworks. Coord. Chem. Rev. 307(JAN.PT.2), 147–187 (2016)

    Article  CAS  Google Scholar 

  28. X. Feng, M. Carreon, Kinetics of transformation on ZIF-67 crystals. J. Cryst. Growth 418, 158–162 (2015)

    Article  CAS  Google Scholar 

  29. R. Wagia, I. Strashnov, M. Anderson, M. Attfield, Insight and control of the crystal growth of zeolitic imidazolate framework ZIF-67 by atomic force microscopy and mass spectrometry. Cryst. Growth Des. 18(2), 695–700 (2018)

    Article  CAS  Google Scholar 

  30. D. Saliba, M. Ammar, M. Rammal, M. Al-Ghoul, M. Hmadeh, Crystal growth of ZIF-8, ZIF-67, and their mixed-metal derivatives. J. Am. Chem. Soc. 140(5), 1812–1823 (2018)

    Article  CAS  Google Scholar 

  31. J. Yan, Y. Huang, X. Han, X. Gao, P. Liu, Metal organic framework (ZIF-67)-derived hollow CoS2/N-doped carbon nanotube composites for extraordinary electromagnetic wave absorption. Compos. B. Eng. 163, 67–76 (2019)

    Article  CAS  Google Scholar 

  32. X. Xu, F. Ran, Z. Fan, H. Lai, Z. Cheng, T. Lv, L. Shao, Y. Liu, Cactus-inspired bimetallic metal-organic framework-derived 1D-2D hierarchical Co/N-decorated carbon architecture toward enhanced electromagnetic wave absorbing performance. ACS Appl. Mater. Interfaces 11(14), 13564–13573 (2019)

    Article  CAS  Google Scholar 

  33. X. Guo, T. Xing, Y. Lou, J. Chen, Controlling ZIF-67 crystals formation through various cobalt sources in aqueous solution. J. Solid State Chem. 235, 107–112 (2016)

    Article  CAS  Google Scholar 

  34. E. Leontidis, Hofmeister anion effects on surfactant self-assembly and the formation of mesoporous solids. Curr. Opin. Colloid Interface Sci. 7(1–2), 81–91 (2002)

    Article  CAS  Google Scholar 

  35. X. Liang, B. Quan, G. Ji, W. Liu, Y. Cheng, B. Zhang, Y. Du, Novel nanoporous carbon derived from metal-organic frameworks with tunable electromagnetic wave absorption capabilities. Inorg. Chem. Front. 3(12), 1516–1526 (2016)

    Article  CAS  Google Scholar 

  36. K. Lin, H. Chang, Zeolitic imidazole framework-67 (ZIF-67) as a heterogeneous catalyst to activate peroxymonosulfate for degradation of Rhodamine B in water. J. Taiwan Inst. Chem. E 53, 40–45 (2015)

    Article  CAS  Google Scholar 

  37. W. Liu, J. Liu, Z. Yang, G. Ji, Extended working frequency of ferrites by synergistic attenuation through a controllable carbothermal route based on Prussian blue shell. ACS Appl. Mater. Interfaces 10(34), 28887–28897 (2018)

    Article  CAS  Google Scholar 

  38. Y. Lü, W. Zhan, Y. He, Y. Wang, X. Kong, Q. Kuang, Z. Xie, L. Zheng, MOF-templated synthesis of porous Co3O4 concave nanocubes with high specific surface area and their gas sensing properties. ACS Appl. Mater. Interfaces 6(6), 4186–4195 (2014)

    Article  Google Scholar 

  39. H. Wu, G. Wu, Y. Ren, L. Yang, L. Wang, X. Li, Co2+/Co3+ ratio dependence of electromagnetic wave absorption in hierarchical NiCo2O4-CoNiO2 hybrids. J. Mater. Chem. C 3(29), 7677–7690 (2015)

    Article  CAS  Google Scholar 

  40. Y. Lu, L. Yu, M. Wu, Y. Wang, X. Lou, Construction of complex Co3O4@Co3V2O8 hollow structures from metal-organic frameworks with enhanced lithium storage properties. Adv. Mater. 30(1), 1702875.1-1702875.6 (2018)

    Article  Google Scholar 

  41. Y. Liu, A. Goncalves, Y. Zhou, M. Jaroniec, Importance of surface modification of gamma-alumina in creating its nanostructured composites with zeolitic imidazolate framework ZIF-67. J. Colloid Interface Sci. 526, 497–504 (2018)

    Article  CAS  Google Scholar 

  42. L. Wang, X. Bai, B. Wen, Z. Du, Y. Lin, Honeycomb-like Co/C composites derived from hierarchically nanoporous ZIF-67 as a lightweight and highly efficient microwave absorber. Compos. B. Eng. 166, 464–471 (2019)

    Article  CAS  Google Scholar 

  43. H. Qiu, X. Zhu, P. Chen, S. Yang, X. Guo, J. Liu, X. Zhu, Magnetic dodecahedral CoC-decorated reduced graphene oxide as excellent electromagnetic wave absorber. J. Electron. Mater. 49(2), 1204–1214 (2019)

    Article  Google Scholar 

  44. L. Xu, Y. Xiong, B. Dang, Z. Ye, C. Jin, Q. Sun, X. Yu, In-situ anchoring of Fe3O4/ZIF-67 dodecahedrons in highly compressible wood aerogel with excellent microwave absorption properties. Mater. Des. 182, 108006 (2019)

    Article  CAS  Google Scholar 

  45. R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O’Keeffe, O. Yaghi, High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319(5865), 939–943 (2008)

    Article  CAS  Google Scholar 

  46. S. Lu, Y. Meng, H. Wang, F. Wang, J. Yuan, H. Chen, Y. Dai, J. Chen, Great enhancement of electromagnetic wave absorption of MWCNTs@carbonaceous CoO composites derived from MWCNTs-interconnected zeolitic imidazole framework. Appl. Surf. Sci. 481, 99–107 (2019)

    Article  CAS  Google Scholar 

  47. P. Miao, J. Yang, Y. Liu, H. Xie, K. Chen, J. Kong, Emerging perovskite electromagnetic wave absorbers from bi-metal-organic frameworks. Cryst. Growth Des. 20(7), 4818–4826 (2020)

    Article  CAS  Google Scholar 

  48. J. Qiao, X. Zhang, D. Xu, L. Kong, L. Lv, F. Yang, F. Wang, W. Liu, J. Liu, Design and synthesis of TiO2/Co/carbon nanofibers with tunable and efficient electromagnetic absorption. Chem. Eng. J. 380, 122591 (2020)

    Article  CAS  Google Scholar 

  49. T. Segakweng, N. Musyoka, J. Ren, P. Crouse, H. Langmi, Comparison of MOF-5- and Cr-MOF-derived carbons for hydrogen storage application. Res. Chem. Intermed. 42(5), 4951–4961 (2015)

    Article  Google Scholar 

  50. S. Yang, T. Kim, J. Im, Y. Kim, K. Lee, H. Jung, C. Park, MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity. Chem. Mater. 24(3), 464–470 (2012)

    Article  CAS  Google Scholar 

  51. S. Dai, B. Quan, X. Liang, J. Lv, Z. Yang, Excellent microwave response derived from the construction of dielectric-loss 1D nanostructure. Nanotechnology 29(19), 195603 (2018)

    Article  Google Scholar 

  52. X. Huang, P. Sheng, Z. Tu, F. Zhang, J. Wang, H. Geng, Y. Zou, C. Di, Y. Yi, Y. Sun, A two-dimensional pi-d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour. Nat. Commun. 6, 7408 (2015)

    Article  CAS  Google Scholar 

  53. X. Sun, L. Sheng, J. Yang, K. An, L. Yu, X. Zhao, Three-dimensional (3D) reduced graphene oxide (RGO)/zinc oxide (ZnO)/barium ferrite nanocomposites for electromagnetic absorption. J. Mater. Sci. Mater. Electron. 28(17), 12900–12908 (2017)

    Article  CAS  Google Scholar 

  54. C. Fu, D. He, Y. Wang, X. Zhao, Enhanced microwave absorption properties of polyaniline-modified porous Fe3O4@C nanosheets. J. Mater. Sci. Mater. Electron. 30(13), 11907–11913 (2019)

    Article  CAS  Google Scholar 

  55. M. Kong, Z. Jia, B. Wang, J. Dou, X. Liu, Y. Dong, B. Xu, G. Wu, Construction of metal-organic framework derived Co/ZnO/Ti3C2Tx composites for excellent microwave absorption. Sustain. Mater. Technol. 26, e00219 (2020)

    CAS  Google Scholar 

  56. M. Qin, L. Zhang, X. Zhao, H. Wu, Defect induced polarization loss in multi-shelled spinel hollow spheres for electromagnetic wave absorption application. Adv. Sci. 8(8), 2004640 (2021)

    Article  CAS  Google Scholar 

  57. M. Qin, L. Zhang, X. Zhao, H. Wu, Lightweight Ni foam-based ultra‐broadband electromagnetic wave absorber. Adv. Funct. Mater. 31(30), 2103436 (2021)

    Article  CAS  Google Scholar 

  58. P. Miao, J. Cao, J. Kong, J. Li, T. Wang, K. Chen, Bimetallic MOF-derived hollow ZnNiC nano-boxes for efficient microwave absorption. Nanoscale 12(25), 13311–13315 (2020)

    Article  CAS  Google Scholar 

  59. X. Shi, M. Cao, J. Yuan, X. Fang, Dual nonlinear dielectric resonance and nesting microwave absorption peaks of hollow cobalt nanochains composites with negative permeability. Appl. Phys. Lett. 95(16), 477 (2009)

    Article  Google Scholar 

  60. Q. Liu, X. He, C. Yi, D. Sun, J. Chen, D. Wang, K. Liu, M. Li, Fabrication of ultra-light nickel/graphene composite foam with 3D interpenetrating network for high-performance electromagnetic interference shielding. Compos. B. Eng. 182, 107614 (2020)

    Article  CAS  Google Scholar 

  61. D. Ding, Y. Wang, X. Li, R. Qiang, P. Xu, W. Chu, X. Han, Y. Du, Rational design of core-shell Co@C microspheres for high-performance microwave absorption. Carbon 111, 722–732 (2017)

    Article  CAS  Google Scholar 

  62. M. Wu, Y. Zhang, S. Hui, T. Xiao, G. Taylor, Microwave magnetic properties of Co50/(SiO2)50 nanoparticles. Appl. Phys. Lett. 80(23), 4404–4406 (2002)

    Article  CAS  Google Scholar 

  63. X. Wu, B. Wen, A cauliflower-shaped nickel@porous calcium silicate core-shell composite: preparation and enhanced electromagnetic shielding performance. Compos. Sci. Technol. 199, 108343 (2020)

    Article  CAS  Google Scholar 

  64. P. Xie, Y. Liu, M. Feng, M. Niu, C. Liu, N. Wu, K. Sui, R. Patil, D. Pan, Z. Guo, R. Fan, Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv. Compos. Hybrid Mater. 4(1), 173–185 (2021)

    Article  CAS  Google Scholar 

  65. D. Xu, N. Wu, K. Le, F. Wang, Z. Wang, L. Wu, W. Liu, A. Ouyang, J. Liu, Bimetal oxide-derived flower-like heterogeneous Co/MnO@C composites with synergistic magnetic-dielectric attenuation for electromagnetic wave absorption. J. Mater. Chem. C 8(7), 2451–2459 (2020)

    Article  CAS  Google Scholar 

  66. F. Wen, H. Yi, L. Qiao, H. Zheng, D. Zhou, F. Li, Analyses on double resonance behavior in microwave magnetic permeability of multiwalled carbon nanotube composites containing Ni catalyst. Appl. Phys. Lett. 92(4), 1032 (2008)

    Article  Google Scholar 

  67. G. Wang, X. Peng, L. Yu, G. Wan, S. Lin, Y. Qin, Enhanced microwave absorption of ZnO coated with Ni nanoparticles produced by atomic layer deposition. J. Mater. Chem. A 3(6), 2734–2740 (2015)

    Article  CAS  Google Scholar 

  68. X. Wu, B. Wen, Vermicular Ni@RL-CS: preparation, characterization and its applications in electromagnetic shielding. Ceram. Int. 47(20), 28698–28713 (2021)

    Article  CAS  Google Scholar 

  69. S. Yan, C. Cao, J. He, L. He, Z. Qu, Investigation on the electromagnetic and broadband microwave absorption properties of Ti3C2 Mxene/flaky carbonyl iron composites. J. Mater. Sci. Mater. Electron. 30(7), 6537–6543 (2019)

    Article  CAS  Google Scholar 

  70. Y. Liu, Y. Li, F. Luo, X. Su, J. Xu, J. Wang, X. He, Y. Shi, Electromagnetic and microwave absorption properties of flaky FeCrAl particles. J. Mater. Sci. Mater. Electron. 28(9), 6619–6627 (2017)

    Article  CAS  Google Scholar 

  71. Z. Li, Z. Yang, Microwave absorption properties and mechanism for hollow Fe3O4 nanosphere composites. J. Magn. Magn. Mater. 387(1), 131–138 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Beijing Natural Science Foundation and Key Scientific Research Project of Beijing Municipal Educational Committee (No. KZ202110011018).

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, experimental data collection and draft writing were performed by CJ. The research ideas, financial support and manuscript improvement were completed by Professor BW.

Corresponding author

Correspondence to Bianying Wen.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 555 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, C., Wen, B. Electromagnetic wave absorption performance and mechanism of Co/C composites derived from different cobalt source ZIF-67: a comparative study. J Mater Sci: Mater Electron 33, 5730–5749 (2022). https://doi.org/10.1007/s10854-022-07759-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07759-z

Navigation