Skip to main content
Log in

Transparent heaters based on CVD grown few-layer graphene

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The outstanding thermal and optical properties of graphene make it tremendously interesting as heating elements. In this work, we demonstrate few-layer graphene as heating elements on glass substrate by chemical vapor deposition (CVD) method combined with a layer-by-layer transfer process. The electrothermal performance was studied in terms of applied voltage, heating/cooling rate and input power density. The results show that a three-layer graphene film heater can reach an equilibrium temperature up to 102 °C and a maximum heating rate of 1.8 °C/s when 60 V voltage was applied. Simulations were further performed to rationalize the experimental results, in which the effect of heat transfer coefficient, electric conductivity, and the effective stress distribution was discussed. It was found that the adhesion between graphene and substrate is very important for the heat performance, especially at high temperatures. Our results indicate that graphene-based films are promising candidate materials for the next generation of transparent heating elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. Veeramuthu, B.Y. Chen, C.Y. Tsai, F.C. Liang, M. Venkatesan, D.H. Jiang, C.W. Chen, X.K. Cai, C.C. Kuo, Novel stretchable thermochromic transparent heaters designed for smart window defroster applications by spray coating silver nanowire. RSC Adv. 9, 35786–35796 (2019)

    Article  CAS  Google Scholar 

  2. H.S. Jo, H.J. Kwon, T.G. Kim, C.W. Park, S. An, A.L. Yarin, S.S. Yoon, Wearable transparent thermal sensors and heaters based on metal-plated fibers and nanowires. Nanoscale 10, 19825–19834 (2018)

    Article  CAS  Google Scholar 

  3. S.S. Yao, J.X. Cui, Z. Cui, Y. Zhu, Soft electrothermal actuators using silver nanowire heaters. Nanoscale 9, 3797–3805 (2017)

    Article  CAS  Google Scholar 

  4. J.J. Bae, S.C. Lim, G.H. Han, Y.W. Jo, D.L. Doung, E.S. Kim, S.J. Chae, T.Q. Huy, N.V. Luan, Y.H. Lee, Heat dissipation of transparent graphene defoggers. Adv. Funct. Mater. 22, 4819–4826 (2012)

    Article  CAS  Google Scholar 

  5. P. Liu, D.L. Zhou, Y. Wei, K.L. Jiang, J.P. Wang, L.N. Zhang, Q.Q. Li, S.S. Fan, Load characteristics of a suspended carbon nanotube film heater and the fabrication of a fast-response thermochromic display prototype. ACS Nano 9, 3753–3759 (2015)

    Article  CAS  Google Scholar 

  6. E.H. Ko, H.J. Kim, S.J. Lee, J.H. Lee, H.K. Kim, Nano-sized Ag inserted into ITO films prepared by continuous roll-to-roll sputtering for high-performance, flexible, transparent film heaters. RSC Adv. 6, 46634–46642 (2016)

    Article  CAS  Google Scholar 

  7. G. Rey, C. Ternon, M. Modreanu, X. Mescot, V. Consonni, D. Bellet, Electron scattering mechanisms in fluorine-doped SnO2 thin films. J. Appl. Phys. 114(18), 183713 (2013)

    Article  Google Scholar 

  8. V.H. Nguyen, U. Gottlieb, A. Valla, D. Munoz, D. Bellet, D. Munoz-Rojas, Electron tunneling through grain boundaries in transparent conductive oxides and implications for electrical conductivity: the case of ZnO: Al thin films. Mater. Horiz. 5, 715–726 (2018)

    Article  CAS  Google Scholar 

  9. D.T. Papanastasiou, A. Schultheiss, D. Munoz-Rojas, C. Celle, A. Carella, J.P. Simonato, D. Bellet, Transparent heaters: A review. Adv. Funct. Mater. 30, 1910225 (2020)

    Article  CAS  Google Scholar 

  10. R.A. Afre, N. Sharma, M. Sharon, M. Sharon, Transparent conducting oxide films for various applications: A review. Rev Adv Mater Sci 53, 79–89 (2018)

    Article  CAS  Google Scholar 

  11. J. Park, I.R. Jang, K. Lee, H.J. Kim, High efficiency crumpled carbon nanotube heaters for low drift hydrogen sensing. Sensors 19, 3878 (2019)

    Article  CAS  Google Scholar 

  12. L.F. Tan, M.Q. Zeng, Q. Wu, L.F. Chen, J. Wang, T. Zhang, J. Eckert, M.H. Rummeli, L. Fu, Direct growth of ultrafast transparent single-layer graphene defoggers. Small 11, 1840–1846 (2015)

    Article  CAS  Google Scholar 

  13. X. Zhang, X.B. Yan, J.T. Chen, J.P. Zhao, Large-size graphene microsheets as a protective layer for transparent conductive silver nanowire film heaters. Carbon 69, 437–443 (2014)

    Article  CAS  Google Scholar 

  14. D. Tigan, S.P. Genlik, B. Imer, H.E. Unalan, Core/shell copper nanowire networks for transparent thin film heaters. Nanotechnology 30, 325202 (2019)

    Article  CAS  Google Scholar 

  15. L.H. Li, S.K. Hong, Y. Jo, M. Tian, C.Y. Woo, S.H. Kim, J.M. Kim, H.W. Lee, Transparent, flexible heater based on hybrid 2D platform of graphene and dry-spun carbon nanotubes. Acs Appl Mater Inter 11, 16223–16232 (2019)

    Article  CAS  Google Scholar 

  16. H. Seo, H.D. Yun, S.Y. Kwon, I.C. Bang, Hybrid graphene and single-walled carbon nanotube films for enhanced phase-change heat transfer. Nano Lett. 16, 932–938 (2016)

    Article  CAS  Google Scholar 

  17. J.C. Goak, T.Y. Kim, D.U. Kim, K.S. Chang, C.S. Lee, N. Lee, Stable heating performance of carbon nanotube/silver nanowire transparent heaters. Appl. Surf. Sci. 510, 145445 (2020)

    Article  CAS  Google Scholar 

  18. H. Zhang, K. Hippalgaonkar, T. Buonassisi, O.M. Løvvik, E. Sagvolden, D. Ding, 2018 Machine Learning for Novel Thermal-Materials Discovery: Early Successes, Opportunities, and Challenges, ES Energy & Environment

  19. Y. Zhang, H. Liu, L. Tan, Y. Zhang, K. Jeppson, B. Wei, J. Liu, Properties of undoped few-layer graphene-based transparent heaters. Materials 13, 104 (2020)

    Article  Google Scholar 

  20. M. Kim, A. Shah, C.F. Li, P. Mustonen, J. Susoma, F. Manoocheri, J. Riikonen, H. Lipsanen, Direct transfer of wafer-scale graphene films. 2d Materials 4(3), 035004 (2017)

    Article  Google Scholar 

  21. D.V. Smovzh, I.A. Kostogrud, E.V. Boyko, P.E. Matochkin, A.A. Pilnik, Joule heater based on single-layer graphene. Nanotechnology (2020). https://doi.org/10.1088/1361-6528/ab8ded

    Article  Google Scholar 

  22. J. Kang, H. Kim, K.S. Kim, S.K. Lee, S. Bae, J.H. Ahn, Y.J. Kim, J.B. Choi, B.H. Hong, High-performance graphene-based transparent flexible heaters. Nano Lett. 11, 5154–5158 (2011)

    Article  CAS  Google Scholar 

  23. N. Karim, M.L.H. Zhang, S. Afroj, V. Koncherry, P. Potluri, K.S. Novoselov, Graphene-based surface heater for de-icing applications. RSC Adv. 8, 16815–16823 (2018)

    Article  CAS  Google Scholar 

  24. D. Sui, Y. Huang, L. Huang, J.J. Liang, Y.F. Ma, Y.S. Chen, Flexible and transparent electrothermal film heaters based on graphene materials. Small 7, 3186–3192 (2011)

    Article  CAS  Google Scholar 

  25. T.Y. Zhang, H.M. Zhao, D.Y. Wang, Q. Wang, Y. Pang, N.Q. Deng, H.W. Cao, Y. Yang, T.L. Ren, A super flexible and custom-shaped graphene heater. Nanoscale 9, 14357–14363 (2017)

    Article  CAS  Google Scholar 

  26. Y.X. Huang, X.P. Chen, J.B. Yu, L.Q. Tao, Graphene-based film heater fabricated by laser writing. Mater. Lett. (2021). https://doi.org/10.1016/j.matlet.2020.128869

    Article  Google Scholar 

  27. Y.X. Huang, L.Q. Tao, J.B. Yu, K. Zheng, G.Y. Wang, X.P. Chen, Improved performance of flexible graphene heater based on repeated laser writing. IEEE Electr Device L 41, 501–504 (2020)

    Article  CAS  Google Scholar 

  28. M.R. Bobinger, F.J. Romero, A. Salinas-Castillo, M. Becherer, P. Lugli, D.P. Morales, N. Rodriguez, A. Rivadeneyra, Flexible and robust laser-induced graphene heaters photothermally scribed on bare polyimide substrates. Carbon 144, 116–126 (2019)

    Article  CAS  Google Scholar 

  29. E.S. Polsen, D.Q. McNerny, B. Viswanath, S.W. Pattinson, A.J. Hart, High-speed roll-to-roll manufacturing of graphene using a concentric tube CVD reactor. Sci Rep-Uk (2015). https://doi.org/10.1038/srep10257

    Article  Google Scholar 

  30. S. Bae, H. Kim, Y. Lee, X.F. Xu, J.S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.J. Kim, K.S. Kim, B. Ozyilmaz, J.H. Ahn, B.H. Hong, S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5, 574–578 (2010)

    Article  CAS  Google Scholar 

  31. Y. Zhang, Y. Fu, M. Edwards, K. Jeppson, L. Ye, J. Liu, Chemical vapor deposition grown graphene on Cu-Pt alloys. Mater. Lett. 193, 255–258 (2017)

    Article  CAS  Google Scholar 

  32. Z. Gao, Y. Zhang, Y. Fu, M.M.F. Yuen, J. Liu, Thermal chemical vapor deposition grown graphene heat spreader for thermal management of hot spots. Carbon 61, 342–348 (2013)

    Article  CAS  Google Scholar 

  33. L.B. Gao, W.C. Ren, H.L. Xu, L. Jin, Z.X. Wang, T. Ma, L.P. Ma, Z.Y. Zhang, Q. Fu, L.M. Peng, X.H. Bao, H.M. Cheng, Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat. Commun. 3, 699 (2012)

    Article  Google Scholar 

  34. C.T. Au, C.F. Ng, M.S. Liao, Methane dissociation and syngas formation on Ru, Os, Rh, Ir, Pd, Pt, Cu, Ag, and Au: A theoretical study. J. Catal. 185, 12–22 (1999)

    Article  CAS  Google Scholar 

  35. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. (2006). https://doi.org/10.1103/PhysRevLett.97.187401

    Article  Google Scholar 

  36. A.C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007)

    Article  CAS  Google Scholar 

  37. T.J. Kang, T. Kim, S.M. Seo, Y.J. Park, Y.H. Kim, Thickness-dependent thermal resistance of a transparent glass heater with a single-walled carbon nanotube coating. Carbon 49, 1087–1093 (2011)

    Article  CAS  Google Scholar 

  38. X.Y. Fang, X.X. Yu, H.M. Zheng, H.B. Jin, L. Wang, M.S. Cao, Temperature- and thickness-dependent electrical conductivity of few-layer graphene and graphene nanosheets. Phys. Lett. A 379, 2245–2251 (2015)

    Article  CAS  Google Scholar 

  39. Y.H. Yoon, J.W. Song, D. Kim, J. Kim, J.K. Park, S.K. Oh, C.S. Han, Transparent film heater using single-walled carbon nanotubes. Adv. Mater. 19, 4284–4287 (2007)

    Article  CAS  Google Scholar 

  40. S.L. Ji, W.W. He, K. Wang, Y.X. Ran, C.H. Ye, Thermal response of transparent silver nanowire/PEDOT:PSS film heaters. Small 10, 4951–4960 (2014)

    Article  CAS  Google Scholar 

  41. COMSOL, in.

  42. S. Subrina, D. Kotchetkov, A.A. Balandin, Heat removal in silicon-on-insulator integrated circuits with graphene lateral heat spreaders. Ieee Electr Device L 30, 1281–1283 (2009)

    Article  CAS  Google Scholar 

  43. R.R. Tummala, Fundamentals of microsystems packaging (McGraw-Hill, New York, 2001)

    Google Scholar 

  44. H.S. Kwak, K. Kim, B.C. Shon, H. Lee, C.S. Han, Thermal characteristics of a transparent film heater using single-walled carbon nanotubes. J. Nanosci. Nanotechnol. 10, 3512–3515 (2010)

    Article  CAS  Google Scholar 

  45. B. Zhang, P. Mao, Y. Liang, Y. He, W. Liu, Z. Liu, Modulating thermal transport in polymers and interfaces: Theories, simulations, and experiments. ES Energy Environ. 5(7), 37–55 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Key R & D Development Program from the Ministry of Science and Technology of China with the Contract No. 2017YFB0406000, National Natural Science Foundation of China (11672171,11802121, 51872182), Natural Science Foundation of Jiangsu Province (BK20180416).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Yang, F., Liu, H. et al. Transparent heaters based on CVD grown few-layer graphene. J Mater Sci: Mater Electron 33, 3586–3594 (2022). https://doi.org/10.1007/s10854-021-07552-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07552-4

Navigation