Skip to main content

Advertisement

Log in

Influence of CdS sensitization on the photovoltaic performance of CdS:TiO2 solar cell

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sensitization of the photoanode with the semiconductor quantum dot strongly affects the final performance of the device. In this work, the effect of the adsorption cycle of cadmium sulfide was analyzed for the CdS sensitizer on CdS:TiO2-based quantum dot-sensitized solar cell. The CdS sensitizer was grown on doctor blade-coated TiO2 films using successive ion layer adsorption and reaction (SILAR) method. Porous, well adherent, and pin-hole-free TiO2 films were deposited on fluorine-doped tin oxide-coated substrate. The structural, morphological, and compositional properties of TiO2 and CdS-sensitized TiO2 films were studied using UV–visible spectroscopy, X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy. The QDSSCs fabricated using CdS sensitizer onto TiO2 photoelectrode were tested for various adsorption cycles of CdS. The influence of various SILAR cycles of CdS sensitizers on the light-harvesting ability of the porous TiO2 photoelectrode and its subsequent highest power conversion efficiency for fabricated QDSSCs were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B. Parida, S. Iniyan, R. Goic, Renew, Sustain. Energy Rev. 15(3), 1625–1636 (2011). https://doi.org/10.1016/j.rser.2010.11.032

    Article  CAS  Google Scholar 

  2. P.V. Kamat, Phys. Chem. 392, 2834–2860 (2007). https://doi.org/10.1021/acs.jpcc.8b03349

    Article  CAS  Google Scholar 

  3. T.P. Chou et al.: J. Phys. Chem. C 111, 6296–6302 (2007). https://doi.org/10.1021/jp068939f

  4. J.P. Sawant, R.B. Kale, Mater. Lett. 2265, 127407 (2020). https://doi.org/10.1016/j.matlet.2020.127407

    Article  CAS  Google Scholar 

  5. J.P. Sawant, R.B. Kale, J. Solid State Electrochem. 24(2), 461–472 (2020). https://doi.org/10.30919/esee8c933

  6. S.A. Mahadik, A. Patil, H.M. Pathan, S.S. Gawali, R.J. Butcher, Eng. Sci. 14, 46–58 (2020). https://doi.org/10.30919/es8d1160

    Article  CAS  Google Scholar 

  7. M. Freitag, J. Teuscher, Y. Saygili, X. Zhang, F. Giordano, P. Liska, J. Hua, S.M. Zakeeruddin, J.-E. Moser, M. Grätzel, and A. Hagfeldt “Dye-sensitized solar cells for efficient power generation under ambient lighting”. Nat. Photon. 11, 372–378 (2017). https://doi.org/10.1038/nphoton.2017.60

    Article  CAS  Google Scholar 

  8. Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Han, Jpn. J. Appl. Phys. 45, 638–640 (2006). https://doi.org/10.1143/JJAP.45.L638

    Article  CAS  Google Scholar 

  9. A. Shabaev, A.L. Efros, A.J. Nozik, Multiexciton generation by a single photon in nanocrystals. Nano Lett. 6(12), 2856–2863 (2006). https://doi.org/10.1021/nl062059v

  10. A. Salant, M. Shalom, I. Hod, A. Faust, A. Zaban, B. Uri, ACS Nano 4, 5962–5968 (2010). https://doi.org/10.1021/nn1018208

    Article  CAS  Google Scholar 

  11. A. Aboulaich, ACS Appl. Mater. Interfaces 4, 2561–2569 (2012). https://doi.org/10.1021/am300232z

  12. O. Chen et al., Nat. Mater. 12, 445–451 (2013). https://doi.org/10.1038/nmat3539

    Article  CAS  Google Scholar 

  13. J.H. Rhee, C.-C. Chung, E.W.-G. Diau, NPG Asia Mater. 5, 68 (2013). https://doi.org/10.1038/am.2013.53

    Article  CAS  Google Scholar 

  14. H.W. Hillhouse, M.C. Beard, Curr. Opin. Colloid Interface Sci. 14, 245–259 (2009). https://doi.org/10.1016/j.cocis.2009.05.002

    Article  CAS  Google Scholar 

  15. W.W. Yu, L. Qu, W. Guo, X. Peng, Chem. Mater. 15, 2854–2860 (2003). https://doi.org/10.1021/cm034081k

    Article  CAS  Google Scholar 

  16. T. López-Luke et al., J. Phys. Chem. C 112, 1282–1292 (2008). https://doi.org/10.1021/jp077345p

    Article  CAS  Google Scholar 

  17. A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, P.V. Kamat, N. Dame, Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe–TiO2 architecture. J. Am. Chem. Soc. 130(12), 4007–4015 (2008). https://doi.org/10.1021/ja0782706

  18. Y. Li, L. Wei, X. Chen, R. Zhang, X. Sui, Y. Chen, J. Jiao, L. Mei, Efficient PbS/CdS co-sensitized solar cells based on TiO2 nanorod arrays. Nanoscale Res. Lett. 8, 67 (2013)

    Article  Google Scholar 

  19. M.B. Rajendra Prasad, P.S. Tamboli, V.P. Bhalekar, V. Kadam, J.T. Abraham, Ch. Rajesh, H.M. Pathan, Impact of the composition of polysulphide electrolyte on the photovoltaic performance in quantum dot sensitized solar cells. Nanotechnology 27, 145402 (2016). https://doi.org/10.1088/0957-4484/27/14/145402

  20. J.P. Sawant, R.J. Deokate, H.M. Pathan, R.B. Kale, Spray pyrolytic deposition of CuInS2 thin films: properties and applications. Eng. Sci. 13, 51–64 (2021). https://doi.org/10.30919/es8d1147

  21. S. Rondiya, A. Rokade, P. Sharma, M. Chaudhary, A. Funde, Y. Jadhav, S. Haram, H. Pathan, S. Jadkar, CZTS/CdS: interface properties and band alignment study towards photovoltaic applications. J. Mater. Sci. Mater. Electron. 29, 4201–4210 (2018). https://doi.org/10.1007/s10854-017-8365-5

  22. F. Tian, D. Hou, F. Hu, K. Xie, X. Qiao, D. Li, Porous TiO2 nanofibers decorated CdS nanoparticles by SILAR method for enhanced visible-light-driven photocatalytic activity. Appl. Surf. Sci. 391, 295–302 (2017). https://doi.org/10.1016/j.apsusc.2016.07.010

  23. C. Ying, F. Guo, L. Xu et al., Ultra-thin CdS buffer layer for efficient Sb2S3-sensitized TiO2 nanorod array solar cells using Sb–thiourea complex solution. J. Nanopart. Res. 23, 200 (2021). https://doi.org/10.1007/s11051-021-05321-2

    Article  CAS  Google Scholar 

  24. X. Wang, J. Li, W. Liu, S. Yang, C. Zhu, T. Chen, A fast chemical approach towards Sb2S3 film with large grain size for high-performance planar heterojunction solar cells. Nanoscale 9(10), 3386–3390 (2017). https://doi.org/10.1039/c7nr00154a

  25. H.M. Pathan, C.D. Lokhnade, Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method. Bull. Mater. Sci. 27, 85–111 (2004). https://doi.org/10.1007/BF02708491

  26. C.V. Jagtap, V.S. Kadam, S.R. Jadkar, H.M. Pathan, Performance of N3 sensitized titania solar cell under artificial light ambience. ES Energy Environ. 3, 60–67 (2019)

  27. P.P. Kanekar, S.O. Kulkarni, C.V. Jagtap, V.S. Kadam, H.M. Pathan, A novel approach for the development of bio-sensitized solar cell using cell lysate of a haloarchaeon Halostagnicola larsenii RG2.14 (MCC 2809) containing bacteriorhodopsin. Appl. Energy 212, 326–331 (2020)

  28. C.V. Jagtap, V.S. Kadam, T.T. Ghogare, Y.A. Inamdar, A.A. Shaikh, R.S. Mane, A. V. Shaikh “Pristine and cadmium-doped zinc oxide: chemical synthesis and characterizations”. J. Mater. Sci. Mater. Electron. 27, 12335–12339 (2016). https://doi.org/10.1007/s10854-016-5624-95

    Article  CAS  Google Scholar 

  29. S.S. Hortikar, V.S. Kadam, A.B. Rathi, C.V. Jagtap, H.M. Pathan, I.S. Mulla, P. V. Adhyapak, Synthesis and deposition of nanostructured SnS for semiconductor-sensitized solar cell. J. Solid State Electrochem. 21, 2707–2712 (2017). https://doi.org/10.1007/s10008-017-3642-z

    Article  CAS  Google Scholar 

  30. S.K. Kokate, C.V. Jagtap, P.K. Baviskar, S.R. Jadkar, H.M. Pathan, K.C. Mohite, CdS sensitized cadmium doped ZnO solar cell: Fabrication and characterizations. Optik 157, 628–634 (2018). https://doi.org/10.1016/j.ijleo.2017.11.098

  31. S.A. Pawar, D.S. Patil, A.C. Lokhande, M. Gil Gang, J. Cheol Shin, P.S. Patil, J.H. Kim, Opt. Mater. 58, 46–50 (2016). https://doi.org/10.1016/j.optmat.2016.05.019

    Article  CAS  Google Scholar 

  32. T. Zewdu, J.N. Clifford, J.P. Herandez, E. Palomares, Energy Environ. Sci. 4, 4633–4463 (2011). https://doi.org/10.1021/nl902438d

    Article  CAS  Google Scholar 

  33. K.Y. Huang, Y. Hsiang Luo, H. Ming Cheng, J. Tang, J. Hua Huang, Nanoscale Res. Lett. 14, 18 (2019). https://doi.org/10.1186/s11671-018-2842-5

  34. P.R. Deshmukh, U.M. Patil, K.V. Gurav, S.B. Kulkarni, C.D. Lokhande, Bull. Mater. Sci. 35, 1181–1186 (2012)

    Article  CAS  Google Scholar 

  35. S. Bhattacharya, A. Pal, A. Jana, J. Datta, J. Mater. Sci. Mater. Electron. 27(12), 12438 (2016). https://doi.org/10.1007/s10854-016-5298-3

  36. Y. Zhang, C. Wang, Z. Yuan, L. Zhang, L. Yin, Eur. J. Inorg. Chem. 16, 2281 (2017). https://doi.org/10.1002/ejic.201700348

    Article  CAS  Google Scholar 

  37. T.T. Ha, N.T. Nguyen, IJSRST 2, 159 (2019). https://doi.org/10.32628/IJSRST162342

  38. Q. Shen, J. Xue, J. Liu, X. Liu, H. Jia, Sol. Energy Mater. Sol. Cells 136, 206 (2015). https://doi.org/10.1016/j.apcatb.2020.119552

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to DST-FIST for financial support for SEM characterization. CVJ is also grateful to the Kiran Division, Department of Science and Technology, Government of India, for partial financial support through Women Scientist Scheme-A, vide Sanction Order SR/WOS-A/PM-11/2019(G). VSK is thankful to BARTI, Pune, Government of Maharashtra, India for partial financial support through the BANRF-2018 fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vishal Kadam or Thamraa Alshahrani.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadam, V., Jagtap, C., Alshahrani, T. et al. Influence of CdS sensitization on the photovoltaic performance of CdS:TiO2 solar cell. J Mater Sci: Mater Electron 32, 28214–28222 (2021). https://doi.org/10.1007/s10854-021-07198-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07198-2

Navigation