Skip to main content
Log in

The synergistic effect of GNPs + CNTs on properties of polyester: comparison with polyester–CNTs nanocomposite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Numerous studies have revealed the properties of composites obtained by adding carbon nanotubes (CNTs) into different polymer matrices. Although CNTs significantly improve the properties of the polymer matrix, problems are experienced in the production of composites due to CNTs. Therefore, only graphene nanoplates (GNPs) at the same rate along with CNTs were added into the polyester matrix which was used as a matrix in this study. In this way, the changes occurring in the properties of polyester were revealed. The mechanical properties of CNTs–GNPs reinforced polyester composite are lower than the composites reinforced only with CNTs. Besides, electrical conductivity of CNTs reinforced polyester composite was lower than CNT + GNP reinforced composite. Mechanical properties and electrical conductivity of both polyester–CNTs composite and polyester–CNT + GNP composite increased with increasing reinforcement ratio. In addition, the thermal properties were examined and glass transition temperature was determined as averagely 79 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Pistone, A.M. Visco, G. Galtieri, D. Iannazzo, C. Espro, F.M. Merlo, F. De Leo, Int. J. Polym. Anal. Charact. 21, 327 (2016)

    Article  CAS  Google Scholar 

  2. M.I.U. Haq, Applications of unsaturated polyester resins. Russ. J. Appl. Chem. 80, 1256 (2007)

    Article  Google Scholar 

  3. C. Bora, P. Bharali, S. Baglari, S.K. Dolui, B.K. Konwar, Compos. Sci. Technol. 87, 1 (2013)

    Article  CAS  Google Scholar 

  4. S. He, N.D. Petkovich, K. Liu, Y. Qian, C.W. Macosko, A. Stein, Polymer 110, 149 (2017)

    Article  CAS  Google Scholar 

  5. S.H. Aziz, M.P. Ansell, S.J. Clarke, S.R. Panteny, Compos. Sci. Technol. 65, 525 (2005)

    Article  CAS  Google Scholar 

  6. L. Tibiletti, C. Longuet, L. Ferry, P. Coutelen, A. Mas, J.J. Robin, J.M. Lopez-Cuesta, Polym. Degrad. Stab. 96, 67 (2011)

    Article  CAS  Google Scholar 

  7. H. Jing, Y. Jiang, X. Du, J. Mater. Sci. Mater. Electron. 24, 667 (2013)

    Article  CAS  Google Scholar 

  8. L. Mohan, S. Karakkad, S.T. Krishnan, J. Mater. Sci. Mater. Electron. 32, 4437 (2021)

    Article  CAS  Google Scholar 

  9. L.S. Vieira, E.G.R. Anjos, G.E.A. Verginio, I.C. Oyama, N.F. Braga, T.F. Silva, L.S. Montagna, M.C. Rezende, F.R. Passador, J. Mater. Sci. Mater. Electron. 32, 3929–3947 (2021)

    Article  Google Scholar 

  10. D. Nepal, S. Balasubramanian, A.L. Simonian, V.A. Davis, Nano Lett. 8, 1896 (2008)

    Article  CAS  Google Scholar 

  11. M.H. Al-Saleh, U.A. Sundararaj, Carbon 47, 2 (2009)

    Article  CAS  Google Scholar 

  12. T. Shah, M. Sadiq, K. Saeed, J. Mater. Sci. Mater. Electron. 31, 560 (2020)

    Article  CAS  Google Scholar 

  13. B. Zeng, J. Mater. Sci. Mater. Electron. 27, 10421 (2016)

    Article  CAS  Google Scholar 

  14. J. Li, J.K. Kim, Compos. Sci. Technol. 67, 2114 (2007)

    Article  CAS  Google Scholar 

  15. A. Yu, P. Ramesh, X. Sun, E. Bekyarova, M.E. Itkis, R.C. Haddon, Adv. Mater. 20, 4740 (2008)

    Article  CAS  Google Scholar 

  16. O. Güler, E. Evin, S.H. Güler, Optoelectron. Adv. Mater. Rapıd Commun. 7, 643 (2013)

    Google Scholar 

  17. A. Amiri, M. Naraghi, G. Ahmadi, M. Soleymaniha, M. Shanbedi, FlatChem 8, 40 (2018)

    Article  CAS  Google Scholar 

  18. E. Shi, H. Li, J. Yang, J. Hou, Y. Li, L. Li, Y. Fang, Adv. Mater. 27, 682 (2015)

    Article  CAS  Google Scholar 

  19. H.L. Ma, L. Zhang, Y. Zhang, S. Wang, C. Sun, H. Yu, M. Zhai, Phys. Chem. 118, 21 (2016)

    CAS  Google Scholar 

  20. X. Wu, F. Mu, H. Zhao, J. Mater. Sci. Technol. 55, 16 (2020)

    Article  Google Scholar 

  21. N. Yang, D. Yang, L. Chen, D. Liu, M. Cai, X. Fan, IEEE Sensors J. 18, 1555 (2017)

    Article  Google Scholar 

  22. G.K. Dimitrakakis, E. Tylianakis, G.E. Froudakis, Nano Lett. 8, 3166 (2008)

    Article  CAS  Google Scholar 

  23. J.H. Deng, R.N. Liu, Y. Zhang, W.X. Zhu, A.L. Han, G.A. Cheng, J. Alloys Compd. 723, 75 (2017)

    Article  CAS  Google Scholar 

  24. B. Li, X. Cao, H.G. Ong, J.W. Cheah, X. Zhou, Z. Yin, H. Zhang, Adv. Mater. 22, 3058 (2010)

    Article  CAS  Google Scholar 

  25. O. Güler, S.H. Güler, V. Selen, M.G. Albayrak, E. Evin, Fullerenes Nanotubes Carbon Nanostruct. 24, 123 (2015)

    Article  Google Scholar 

  26. P.C. Ma, N.A. Siddiqui, G. Marom, J.K. Kim, Composites Part A 41, 1345 (2010)

    Article  Google Scholar 

  27. C. Zhang, T. Liu, Chin. Sci. Bull. 57, 3010 (2012)

    Article  CAS  Google Scholar 

  28. Y. Xue, Y. Ding, J. Niu, Z. Xia, A. Roy, H. Chen, L. Dai, Sci. Adv. 1, e1400198 (2015). https://doi.org/10.1126/sciadv.1400198

    Article  CAS  Google Scholar 

  29. Y. Cheng, X. Shi, N.M. Pugno, H. Gao, Physica E 44, 955 (2012)

    Article  CAS  Google Scholar 

  30. M.H. Al-Saleh, Synth. Met. 209, 41 (2015)

    Article  CAS  Google Scholar 

  31. S.Y. Yang, W.N. Lin, Y.L. Huang, H.W. Tien, J.Y. Wang, C.C.M. Ma, S.M. Li, Y.S. Wang, Carbon 49, 793 (2011)

    Article  CAS  Google Scholar 

  32. A.A. Moosa, A.R. SA, M.N. Ibrahim, Am. J. Mater. Sci. 6, 157 (2016)

    Google Scholar 

  33. J. Li, P.C. Ma, W.S. Chow, C.K. To, B.Z. Tang, J.K. Kim, Adv. Funct. Mater. 17, 3207 (2007)

    Article  CAS  Google Scholar 

  34. A.V. Desai, M.A. Haque, Thin-Walled Struct. 43, 1787 (2005)

    Article  Google Scholar 

  35. R. Mitchell, R. Geoffrey et al., Carbon nanotubes: Recent progress. IntechOpen, 127 (2017)

  36. C.A. Martin, J.K.W. Sandler, A.H. Windle, M.K. Schwarz, W. Bauhofer, K. Schulte, M.S.P. Shaffer, Polymers 46, 877 (2005)

    Article  CAS  Google Scholar 

  37. L. Yue, G. Pircheraghi, S.A. Monemian, I. Manas-Zloczower, Carbon 78, 268 (2014)

    Article  CAS  Google Scholar 

  38. B. Marinho, M. Ghislandi, E. Tkalya, C.E. Koning, G. de With, Powder Technol. 221, 351 (2012)

    Article  CAS  Google Scholar 

  39. Y. Li, T. Yang, T. Yu, L. Zheng, K. Liao, J. Mater. Chem. 21, 10844 (2011)

    Article  CAS  Google Scholar 

  40. J. Yan, T. Wei, Z. Fan, W. Qian, M. Zhanga, X. Shen, F. Wei, J. Power Sources 195, 3041 (2010)

    Article  CAS  Google Scholar 

  41. A. Patti, D. Acierno, Polypropylene Polymerization and Characterization of Mechanical and Thermal Properties. IntechOpen, 37 (2019)

  42. J. Bartels, J.P. Jürgens, E. Kuhn, V. Ploshikhin, J. Compos. Mater. 53, 1033 (2019)

    Article  CAS  Google Scholar 

  43. Y.H. Liao, O. Marietta-Tondin, Z. Liang, C. Zhang, B. Wang, Mater. Sci. Eng. A 385, 175 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ömer Güler.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Güler, Ö., Başgöz, Ö., Güler, S.H. et al. The synergistic effect of GNPs + CNTs on properties of polyester: comparison with polyester–CNTs nanocomposite. J Mater Sci: Mater Electron 32, 17436–17447 (2021). https://doi.org/10.1007/s10854-021-06275-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06275-w

Navigation