Skip to main content

Advertisement

Log in

Microwave synthesis of β-Cu2V2O7 nanorods: structural, electrochemical supercapacitance, and photocatalytic properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanostructured metal vanadates have recently harvested enormous consideration among the researchers due to their remarkable performances in catalysis, electronic devices, energy storage, and conversion. In the present work, we have formulated a facile and template-free method to synthesize β-Cu2V2O7 nanorods and analyzed their characteristics by using various spectroscopy techniques. Copper and vanadium are the earth abundant, relevantly economical, and possess several oxidation states, which can render a broad range of redox reactions favorable for the electrochemical performance. The catalytic efficiency of the synthesized nanomaterial was assessed by the photocatalytic degradation of methylene blue (MB) as a model cationic dye under the visible light irradiation. At the irradiation time of 60 min, the catalyst showed the degradation efficiency of 81.85%, kapp (min− 1) of 0.0193 min−1 with the first-order kinetic model reaction. The electrochemical measurements were performed using a three-electrode configuration in 1M NaOH solution. The measured specific capacitance of Cu2V2O7 modified electrode was 269 F/g at 1 A/g with good stability and retention capacity of 89% after 4000 cycles that paved the way to consider β-Cu2V2O7 as prospective material for energy-storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Scheme 2

Similar content being viewed by others

References

  1. S. Zhang, M. Hou, L. Hou, M. Lu, Chem. Phys. Lett. 658, 203–206 (2016)

    CAS  Google Scholar 

  2. M. Krengel, A.L. Hansen, M. Kaus, S. Indris, N. Wolff, L. Kienle, D. Westfal, W. Bensch, Appl. Mater. Interfaces. 9, 21283–21291 (2017)

    CAS  Google Scholar 

  3. S.S. Patil, D.P. Dubal, V.G. Deonikar, M.S. Tamboli, J.D. Ambekar, P.G. Romero, S.S. Kolekar, B.B. Kale, D.R. Patil, Appl. Mater. Interfaces. 8, 31602–31610 (2016)

    CAS  Google Scholar 

  4. F.K. Butt, M. Tahir, C. Cao, F. Idrees, R. Ahmed, W.S. Khan, Z. Ali, N. Mahmood, M. Tanveer, A. Mahmood, I. Aslam, Appl. Mater. Interfaces. 6, 13635–13641 (2014)

    CAS  Google Scholar 

  5. S.Y. Zhang, L.J. Ci, Synthesis and formation mechanism of Cu3V2O7(OH)2.2H2O nanowires. Mater. Res. Bull. 44, 2027–2032 (2009)

    CAS  Google Scholar 

  6. S. Mishra, M. Priyadarshinee, A.K. Debnath, K.P. Muthe, B.C. Mallick, N. Das, P. Parhi, J. Phys. Chem. Solids 137, 109211 (2020)

    CAS  Google Scholar 

  7. C. Sengottaiyan, N.A. Kalam, R. Jayavel, R.G. Shrestha, T. Subramani, S. Sankar, J.P. Hill, L.K. Shrestha, K. Ariga, J. Solid. State. Chem. 269, 409–418 (2019)

    CAS  Google Scholar 

  8. V. Sivakumar, R. Suresh, K. Giribabu, V. Narayanan, Cogent Chem. 1, 1074647 (2015)

    Google Scholar 

  9. D.C. Morcoso, A.P. Franch, I.H. Cardona, S. Gimenez, Catal. Today 290, 65–72 (2017)

    Google Scholar 

  10. C.S. Lim, Asian J. Chem. 25, 2395–2398 (2013)

    CAS  Google Scholar 

  11. F. Chengab, J. Chen, J. Mater. Chem. 21, 9841–9848 (2011)

    Google Scholar 

  12. D.P. Dubal, D.S. Dhawale, R.R. Salunkhe, V.S. Jamdade, C.D. Lokhande, J. Alloys Compd. 492, 26–30 (2010)

    CAS  Google Scholar 

  13. L. Deng, J. Liu, Z. Ma, G. Fan, Z. Liu, RSC Adv. 8, 24796–24804 (2018)

    CAS  Google Scholar 

  14. V.I. Merupo, S. Velumani, K. Ordon, N. Errien, J. Szade, A.H. Kassiba, Cryst. Eng. Comm. 17, 3366–3375 (2015)

    CAS  Google Scholar 

  15. Y. Zhang, Y. Liu, J. Chen, Q. Guo, T. Wang, H. Pang, Sci. Rep. 4, 5687 (2014)

    CAS  Google Scholar 

  16. Y. Arora, A.P. Shah, S. Battu, C.B. Maliakkal, S. Haram, A. Bhattacharya, D. Khushalani, Sci. Rep. 6, 36294 (2016)

    CAS  Google Scholar 

  17. W. Guo et al., J. Phys. Chem. C 119, 27220–27227 (2015)

    CAS  Google Scholar 

  18. X. Zhou, G. Wu, J. Wu, H. Yang, J. Wang, G. Gao, Phys. Chem. Chem. Phys. 16, 3973–3982 (2014)

    CAS  Google Scholar 

  19. Z.N. Kayani, M. Umer, S. Riaz, S. Naseem, J. Electron. Mater. 44, 3705–3709 (2015)

    Google Scholar 

  20. P.K. Singh, P. Kumar, M.H.A. Kumar, Das, G.C. Nayak, Bull. Mater. Sci. 39, 469–478 (2016)

    CAS  Google Scholar 

  21. S.H. Tohidi, A.J. Novinrooz, M. Derhambakhsh, G.L. Grigoryan, Int. J. Nanosci. Nanotechnol. 8, 143–148 (2012)

    Google Scholar 

  22. M. Poloju, N. Jayababu, M.V.R. Reddy, Mater. Sci. Eng. B 227, 61–67 (2018)

    CAS  Google Scholar 

  23. S. Shuang, L. Girardi, G.A. Rizzi, A. Sartorel, C. Marega, Z. Zhang, G. Granozzi, Nanomaterials 8, 544 (2018)

    Google Scholar 

  24. R.B. Hadjean, M.B. Smirnov, K.S. Smirnov, V. Yu Kazimirov, J.M.G. Amores, U. Amador, M.E.A. Dompablo, J.P.P. Ramos, Inorg. Chem. 51, 3194–3201 (2012)

    Google Scholar 

  25. I. Khan, A. Qurashi, Sci. Rep. 7, 14370–14381 (2017)

    Google Scholar 

  26. M.K. Hossain, P. Sotelo, H.P. Sarker, M.T. Galante, A. Kormanyos, C. Longo, R.T. Macaluso, M.N. Huda, C. Janaky, K. Rajeshwar, ACS Appl. Energy Mater. 2, 2837–2847 (2019)

    CAS  Google Scholar 

  27. J.A. Syed, J. Ma, B. Zhu, S. Tang, X. Meng, Adv. Energy Mater. 7, 1701228–1701240 (2017)

    Google Scholar 

  28. D.P. Dubal, G.S. Gund, C.D. Lokhande, R. Holze, Mater. Res. Bull. 48, 923–928 (2013)

    CAS  Google Scholar 

  29. S.E. Moosavifard, J. Shamsi, S. Fani, S. Kadkhodazade, Ceram. Int. 40, 15973–15979 (2014)

    CAS  Google Scholar 

  30. S. Vijayakumar, S.H. Lee, K.S. Ryu, RSC Adv. 5, 91822–91828 (2015)

    CAS  Google Scholar 

  31. R. Kumar, P. Rai, A. Sharma, J. Mater. Chem. A 4, 9822–9831 (2016)

    CAS  Google Scholar 

  32. R. Tummala, R.K. Guduru, P.S. Mohanty, J. Power Sources 209, 44–51 (2012)

    CAS  Google Scholar 

  33. B. Ameri, S.S.H. Davarani, R. Roshani, H.R. Moazami, A. Tadjarodi, J. Alloys Compd. 695, 114–123 (2017)

    CAS  Google Scholar 

  34. Y. Liua, H. Huanga, X. Penga, Electrochim. Acta 104, 289–294 (2013)

    Google Scholar 

  35. R.N. Reddy, R.G. Reddy, J. Power Sources 156, 700–704 (2006)

    CAS  Google Scholar 

  36. Q.T. Qu, Y. Shi, L.L. Li, W.L. Guo, Y.P. Wu, H.P. Zhang, S.Y. Guan, R. Holze, Electrochem. Commun. 11, 1325–1328 (2009)

    CAS  Google Scholar 

  37. U.M. Patil, K.V. Gurav, V.J. Fulari, C.D. Lokhande, O.S. Joo, J. Power Sources 188, 338–342 (2009)

    CAS  Google Scholar 

  38. J. Yesuraj, S. Austin Suthanthiraraj, O. Padmaraj, Mater. Sci. Semicond. Process. 90, 225–235 (2019)

    CAS  Google Scholar 

  39. Junwu Xiao, S. Yang, J. Mater. Chem. 22, 12253–12262 (2012)

    Google Scholar 

  40. M.S. Hafsa Siddiqui, F.Z. Qureshi, Haque, Nano-Micro Lett. 12, 29 (2020)

    Google Scholar 

  41. L. Vimala Devi, S. Sellaiyan, T. Selvalakshmi, H.J. Zhang, A. Uedono, K. Sivaji, S. Sankar, Adv. Powder Technol. 28, 3026–3038 (2017)

    CAS  Google Scholar 

  42. M. Ghiyasiyan-Arani, M. Masjedi-Arani, M. Salavati-Niasari, J. Mater. Sci.: Mater. Electron. 27, 4871–4878 (2016)

    CAS  Google Scholar 

  43. S. Hariganesh, S. Vadivel, D. Maruthamani, M. Kumaravel, B. Paul, N. Balasubramanian, T. Vijayaraghavan, Appl. Organomet. Chem. 34, 5365 (2020)

    Google Scholar 

  44. B.M. Babar, A.A. Mohite, V.L. Patil, U.T. Pawar, L.D. Kadam, P.M. Kadam, P.S. Patil, Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.04.205

    Article  Google Scholar 

  45. A. Song, A. Chemseddine, D. Friedrich, F.F. Abdi, S.P. Berglund, R. van de Krol, Chem. Mater. 32, 2408–2419 (2020)

    CAS  Google Scholar 

  46. M.A. Marsooli, M.R. Nasrabadi, M. Fasihi-Ramandi, K. Adib, S. Pourmasoud, F. Ahmadi, M. Eghbali, A.S. Nasab, M. Tomczykowa, M.E. Plonska-Brzezinska, Catalysts 494, 10 (2020)

    Google Scholar 

  47. A. Khoobi, F. Shahdost-Fard, M. Arbabi, M. Akbari, H. Mirzaei, M. Nejati, M. Lotfinia, A. Sobhani-Nasab, H.R. Banafshe, Polyhedron 177, 114302 (2020)

    CAS  Google Scholar 

  48. M.A. Marsooli, M.R. Nasrabadi, M. Fasihi-ramandi, K. Adib, M. Eghbali, S. Pourmasoud, F. Ahmadi, E. Sohouli, A.S. Nasab, S.A. Mirhosseini, M.R. Ganjali, Polyhedron 176, 114239 (2020)

    Google Scholar 

Download references

Acknowledgements

The author S. Muthamizh acknowledges the ANID-FONDECYT Postdoctoral project No.: 3190495, ANID – Millennium Science Initiative Program – NCN17_040, FONDAP Solar Energy Research Center, SERC–Chile15110019 for the financial assistance and DST-SERB (File No.: PDF/2017/000108) for National Postdoctoral Fellowship and Crystal Growth Centre, Anna University, Chennai.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Muthamizh or R. V. Mangalaraja.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthamizh, S., Yesuraj, J., Jayavel, R. et al. Microwave synthesis of β-Cu2V2O7 nanorods: structural, electrochemical supercapacitance, and photocatalytic properties. J Mater Sci: Mater Electron 32, 2744–2756 (2021). https://doi.org/10.1007/s10854-020-05007-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05007-w

Navigation