Skip to main content
Log in

Effect of different rare earth (RE = Y3+, Sm3+, La3+, and Yb3+) ions doped on the magnetic properties of Ni–Cu–Co ferrite nanomagnetic materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

With the development of science and technology, the research on magnetic materials is particularly important. In particular, the application of nanomagnetic materials in computer chips, magnetic recording, and biomedical fields has high research value. In this paper, Ni–Cu–Co ferrite nanomagnetic materials doped with rare earth (RE = Y3+, Sm3+, La3+ and Yb3+) ions were prepared by sol–gel auto-combustion method. The spinel structure of the sample was analyzed by X-ray diffraction (XRD), and the average crystallite size of the doped rare earth ions was calculated by the half width of (311) peak. The samples were further characterized by Fourier-transform infrared spectroscopy (FT-IR). Two characteristic peaks are at the wave number of 603 cm−1 and 391 cm−1, respectively. The morphology of the nanomagnetic grains was observed by scanning electron microscopy (SEM), and it was found that the nanomagnetic grains of the samples were all spherical or quasi spherical structure with water chestnut. Transmission electron microscopy (TEM) was used to observe the pure samples and Y3+ ion-doped samples. Through EDS analysis, it is found that the chemical composition of the sample is Ni, Cu, Co, Fe, O, Y, Sm, La, and Yb. Through vibration sample magnetometer (VSM) analysis, the samples of Ni–Cu–Co ferrite doped with different RE3+ ions have the characteristics of ferromagnetism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.U. Ali, M. Islam, Ishaque et al, Structural and magnetic properties of holmium substituted cobalt ferrites synthesized by chemical co-precipitation method. J. Magn. Magn. Mater. 324, 3773 (2012)

    Article  CAS  Google Scholar 

  2. G.V.M. Williams, T. Prakash, J. Kennedy, S.V. Chong, S. Rubanov, Spin-dependent tunnelling in magnetite nanoparticles. J. Magn Magn Mater. 460, 229–233 (2018)

    Article  CAS  Google Scholar 

  3. J. Kennedy, J. Leveneur, G.V.M. Williams et al., Fabrication of surface magnetic nanoclusters using low energy ion implantation and electron beam annealing. Nanotechnology 22, 115602 (2011)

    Article  CAS  Google Scholar 

  4. I.A. Auwal, B. Ünal, H. Güngüneş, S.E. Shirsath, A. Baykal, Dielectric properties, cationic distribution calculation and hyperfine interactions of La3+ and Bi3+ doped strontium hexaferrites. Ceram. Int. 42, 9100–9115 (2016)

    Article  CAS  Google Scholar 

  5. R.A. Pawar, S.M. Patange, A.R. Shitre, S.K. Gore, S.S. Jadhav, S.E. Shirsath, Crystal chemistry and single-phase synthesis of Gd3+ substituted Co-Zn ferrite nanoparticles for enhanced magnetic properties. Nanoscale Horizons 8, 25258–25267 (2018)

    CAS  Google Scholar 

  6. I. Soibam, S. Phanjoubam, H.B. Sharma et al., Effects of cobalt substitution on the dielectric properties of Li–Zn ferrites. Solid State Commun. 148, 399–402 (2008)

    Article  CAS  Google Scholar 

  7. Y. Slimani, M.A. Almessiere, A. Demir Korkmaz, S. Guner, H. Güngüneş, M. Sertkol, A. Manikandan, A. Yildiz, S. Akhtar, S.E. Shirsath, A. Baykal, Ni0.4Cu0.2Zn0.4TbxFe2xO4 nanospinel ferrites: ultrasonic synthesis and physical properties. Ultrason. Sonochem. 59, 104757 (2019)

    Article  CAS  Google Scholar 

  8. P.R. Arjunwadkar, R.R. Patil, D.K. Kulkarni, Effect of sintering temperature on the structural, electrical and magnetic properties of Li0.5Al1.0Fe2O4 ferrite prepared by combustion method. J. Alloys Compd. 463, 403–407 (2008)

    Article  CAS  Google Scholar 

  9. S. Kumar, Alimuddin, R. Kumar, P. Thakur, K.H. Chae, B. Angadi, W.K. Choi, Electrical transport, magnetic, and electronic structure studies of Mg0.95Mn0.05Fe2−2xTi2xO4 ± δ (0 ≤ x ≤ 0.5) ferrites. J. Phys. Condens. Matter 19, 1–15 (2007)

  10. L. Satyanarayana, K.M. Reddy, S.V. Manorama, Nanosized spinel NiFe2O4: a novel material for the detection of liquefied petroleum gas in air. Mater. Chem. Phys. 82, 21–26 (2003)

    Article  CAS  Google Scholar 

  11. F. Kenfack, H. Langbein, Influence of the starting powders on the synthesis of nickel ferrite. Cryst. Res. Technol. 41, 748 (2006)

    Article  CAS  Google Scholar 

  12. C.P. Liu, M.W. Li, Z. Cui, J.R. Huang, Y.L. Tian, T. Lin, W.B. Mi, Comparative study of magnesium ferrite nanocrystallites prepared by sol–gel and coprecipitation methods. J. Mater. Sci. 42, 6133 (2007)

    Article  CAS  Google Scholar 

  13. P.K. Chakrabarti, B.K. Nath, S. Brahma, S. Das, K. Gosawami, V. Kumar, P.K. Mukhopadhyay, D. das, M. Ammer, F. Mazaleyrat, J. Phys. Condens. Matter 18, 5253 (2006)

    Article  CAS  Google Scholar 

  14. S.E. Shirsath, X. Liu, Y. Yasukawa et al., Switching of magnetic easy-axis using crystal orientation for large perpendicular coercivity in CoFe2O4 thin film. Sci. Rep. 30074, 1–11 (2016)

    Google Scholar 

  15. S.E. Shirsath, X. Liu, M.H.N. Assadi et al., Au quantum dots engineered room temperature crystallization and magnetic anisotropy in CoFe2O4 thin films. Nanoscale Horizons 4, 434–444 (2018)

    Article  Google Scholar 

  16. M. Hashim, M. Raghasudha, S.S. Meena et al., Influence of rare earth ion doping (Ce and Dy) on electrical and magnetic properties of cobalt ferrites. J. Magn. Magn. Mater. 449, 319–327 (2018)

    Article  CAS  Google Scholar 

  17. S.E. Shirsath, M.L. Mane, Y. Yasukawa, X. Liu, A. Morisako, Self-ignited high temperature synthesis and enhanced super-exchange interactions of Ho3+-Mn2+-Fe3+-O2- ferromagnetic nanoparticles. Phys. Chem. Phys. 16, 2347–2357 (2014)

    Article  CAS  Google Scholar 

  18. S.E. Shirsath, C. Cazorla, T. Lu, L. Zhang, Y.Y. Tay, X. Lou, Y. Liu, S. Li, D. Wang, Interface-charge induced giant electrocaloric effect in lead free ferroelectric thin-film bilayers. Nano Lett. 20, 1262–1271 (2020)

    Article  CAS  Google Scholar 

  19. S. Amiri, H. Shokrollahi, Magnetic and structural properties of RE doped Co-ferrite (RE=Nd, Eu, and Gd) nano-particles synthesized by co-precipitation. J. Magn. Magn. Mater. 345, 18–23 (2013)

    Article  CAS  Google Scholar 

  20. S.E. Shirsath, R.H. Kadam, S.M. Patange, M.L. Mane, A. Ghasemi, A. Morisako, Enhanced magnetic properties of Dy3+ substituted Ni-Cu-Zn ferrite nanoparticles. Appl. Phys. Lett. 100, 042407 (2012)

    Article  CAS  Google Scholar 

  21. V. Stevanović, M. d’Avezac, A. Zunger, Simple point-ion electrostatic model explains the cation distribution in spinel oxides. Phys. Rev. Lett. 105, 075501 (2010)

    Article  CAS  Google Scholar 

  22. D. Fritsch, C. Ederer, First-principles calculation of magnetoelastic coefficients and magnetostriction in the spinel ferrites CoFe2O4 and NiFe2O4. Phys. Rev. B 86, 014406 (2012)

    Article  CAS  Google Scholar 

  23. J. Jing, L. Liangchao, X. Feng, Structural analysis and magnetic properties of Gd3+ ion doped Li-Ni ferrites prepared using rheological phase reaction method. J. Rare Earths 25, 79–83 (2007)

    Article  Google Scholar 

  24. M.P. Reddy, X. Zhou, A. Yann, S. Dua, Q. Huang, A. Mohamed, Low temperature hydrothermal synthesis, structural investigation and functional properties of CoxMn1xFe2O4 (0 ≤x≤1.0) nanoferrites. Superlattice Microstruct. 81, 233–242 (2015)

    Article  CAS  Google Scholar 

  25. E. Ateia, A.A.H. El-Bassuony, Fascinating improvement in physical properties of Cd/Co nanoferrites using different rare earth ions. J Mater Sci: Mater Electron. 28, 11482–11490 (2017)

    CAS  Google Scholar 

  26. V. Verma, Structural, electrical and magnetic properties of rare-earth and transition element co-doped bismuth ferrites. J. Alloys Compd. 641, 205–209 (2015)

    Article  CAS  Google Scholar 

  27. S.E. Shirsath, D. Wang, S.S. Jadhav, M.L. Mane, S. Li, Ferrites obtained by sol-gel method, in Handbook of Sol-Gel Science and Technology. ed. by L. Klein, M. Aparicio, A. Jitianu (Springer, Cham, 2018), pp. 695–735

    Chapter  Google Scholar 

  28. R.N. Bhowmik, R. Ranganathan et al., Coexistence of spin glass and superparamagnetism with ferrimagnetic order in polycrystalline spinel Co0.2Zn0.8Fe1.95Ho0.05O4. J. Magn. Magn. Mater. 299, 327–337 (2006)

    Article  CAS  Google Scholar 

  29. A.B. Gadkari, T.J. Shinde, P.N. Vasambekar, Structural analysis of Y3+-doped Mg–Cd ferrites prepared by oxalate co-precipitation method. Mater. Chem. Phys. 114, 505–510 (2009)

    Article  CAS  Google Scholar 

  30. R.D. Shannon, C.T. Prewitt, Acta Crystallogr. B 25, 925 (1969)

    Article  CAS  Google Scholar 

  31. K.P. Chae, J.-G. Lee, H.S. Kweon, Y.B. Lee, Synthesis and magnetic properties of AlxCoFe2−xO4 ferrite powders. Phys. Status Solidi 201, 1883–1888 (2004)

    Article  CAS  Google Scholar 

  32. S. Singhal, S.K. Barthwal, K. Chandra, XRD, magnetic and Mössbauer spectral studies of nanosize aluminum substituted cobalt ferrites (CoAlxFe2−xO4). J. Magn. Magn. Mater. 306, 233–240 (2006)

    Article  CAS  Google Scholar 

  33. R.N. Bhowmik, R. Ranganathan, “Super-ferromagnetic” clusters in spinel oxide. J. Magn. Magn. Mater. 247, 83–91 (2002)

    Article  CAS  Google Scholar 

  34. N. Sharma, P. Aghamkar, S. Kumar, M. Bansal, Anju, R.P. Tondon, Study of structural and magnetic properties of Nd doped zinc ferrites. J. Magn. Magn. Mater. 369, 162–167 (2014)

  35. S.K. Sharma, R. Kumar, S. Kumar, M. Knobel et al., J. Phys. Condens. Matter. 20, 235214 (2008)

    Article  CAS  Google Scholar 

  36. M. Ben Ali, K. El Maalam, H. El Moussaoui, O. Mounkachi, M. Hamedoun, R. Masrour, E.K. Hlil, A. Benyoussef, Effect of zinc concentration on the structural and magnetic properties of mixed Co-Zn ferrites nanoparticles synthesized by sol/gel method. J. Magn. Magn. Mater. 398, 20–25 (2016)

    Article  CAS  Google Scholar 

  37. M.I. Abdel-Ati, Study of the jump length effect of Co0.6Zn0.4 ferrites. Phys. Status Solidi (A) 157, 523 (1996)

    Article  CAS  Google Scholar 

  38. X. Zhao, W. Wang, Y. Zhang, S. Wu, F. Li, J.P. Liu, Synthesis and characterization of gadolinium doped cobalt ferrite nanoparticles with enhanced adsorption capability for Congo Red. Chem. Eng. J. 250, 164–174 (2014)

    Article  CAS  Google Scholar 

  39. M.D. Shultz, E.E. Carpenter, S.A. Morrison, S. Calvin, Cation occupancy determination in manganese zinc ferrites using Fourier transform infrared spectroscopy. J. Appl. Phys. 99, 83–86 (2006)

    Article  CAS  Google Scholar 

  40. C. Virlan, G. Bulai, O.F. Caltun et al., Rare earth metals influence on the heat generating capability of cobalt ferrite nanoparticles. Ceram. Int. 42, 11958–11965 (2016)

    Article  CAS  Google Scholar 

  41. J. Smit, H.P.J. Wijn, Ferrites (Wiley, New York, 1959).

    Google Scholar 

  42. B.D. Cullity, Elements of X-Ray Diffraction, vol. 99 (Addison Wesley, Reading, 1967), p. 96

    Google Scholar 

  43. S.G. Gawas, U.B. Gawas, V.M.S. Verenkar, M.M. Kothawale, R. Pednekar, Structural and magnetic studies of Cu-substituted nanocrystalline Ni–Zn ferrites obtained via hexamine–nitrate combustion route. J. Superconduct. Nov. Magn. 30, 1447–1452 (2017)

    Article  CAS  Google Scholar 

  44. H.E. Hassan, T. Sharshar, M.M. Hessien et al., Effect of c-rays irradiation on Mn-Ni ferrites: structure, magnetic properties and positron annihilation studies. Nucl. Instrum. Methods Phys. Res. B. 304, 72–79 (2013)

    Article  CAS  Google Scholar 

  45. N. Rezlescu, E. Rezlescu, C. Pasnicu, M.L. Craus, Effects of the rare-earth ions on some properties of a nickel-zinc ferrite. I. Phys. Condens. Matter. 6, 5707–5716 (1994)

    Article  CAS  Google Scholar 

  46. J.L. Bhosale, S.N. Kulkarni, R.B. Sasmile, B.K. Chougule, Indian J. Pure Appl. Phys. 33, 412 (1999)

    Google Scholar 

  47. Y. Matsuo, K. Ono, M. Ishikura, I. Sasaki, Effects of MoO3 addition on manganese zinc ferrites. IEEE Trans. Magn. 33, 3751–3753 (1997)

    Article  CAS  Google Scholar 

  48. K. Siraj, M. Khaleeq-ur-Rahman, S.I. Hussain et al., Effect of deposition temperature on structural, surface, optical and magnetic properties of pulsed laser deposited Al doped CdO thin films. J. Alloys Compd. 509, 6756–6762 (2011)

    Article  CAS  Google Scholar 

  49. Y. Slimani, M.A. Almessiereb, E. Hannachi, A. Baykal, A. Manikandan, M. Mumtaz, F. Ben Azzouz, Influence of WO3 nanowires on structural, morphological and flux pinning ability of YBa2Cu3Oy superconductor. Ceram. Int. 45, 2621–2628 (2019)

    Article  CAS  Google Scholar 

  50. R.D. Waldron, Phys. Rev. 99, 1727 (1955)

    Article  CAS  Google Scholar 

  51. Q.M. Wei, J.B. Li, Y.J. Chen, Cation distribution and infrared properties of NixMn1−xFe2O4 ferrites. J. Mater. Sci. 36, 5115–5118 (2001)

    Article  CAS  Google Scholar 

  52. I. Panneer Muthuselvam, R.N. Bhowmik, Connectivity between electrical conduction and thermally activated grain size evolution in Ho-doped CoFe2O4 ferrite. J. Phys. D Appl. Phys. 43, 3 (2010)

    Google Scholar 

  53. M. Abdullah Dar, V. Verma, S.P. Gairola et al., Low dielectric loss of Mg doped Ni-Cu-Zn nano-ferrites for power applications. Appl. Surf. Sci. 258, 5342–5347 (2012)

    Article  CAS  Google Scholar 

  54. S. Maensiri, C. Masingboon, B. Boonchomb, S. Seraphinc, A simple route to synthesize nickel ferrite (NiFe2O4) nanoparticles using egg white. Scr. Mater. 56, 797–800 (2007)

    Article  CAS  Google Scholar 

  55. C.K.Y. Yafet, Phys. Rev. 87, 290–294 (1958)

    Article  Google Scholar 

  56. A.A. Ati, Z. Othaman, A. Samavati, F.Y. Doust, Structural and magnetic properties of Co-Al substituted Ni ferrites synthesized by co-precipitation method. J. Mol. Struct. 1058, 136–141 (2014)

    Article  CAS  Google Scholar 

  57. V.S. Sawant, A.A. Bagade, S.V. Mohite, K.Y. Rajpure, IR absorption spectroscopic study of mixed cobalt substituted lithium ferrites. Phys. B 451, 39–42 (2014)

    Article  CAS  Google Scholar 

  58. S.R. Sawant, S.S. Suryavanshi, Ion-covalent and Yafet Kittle (YK) angle studies of slow cooled and quenched CuZn–system. Curr. Sci. 57, 644–647 (1998)

    Google Scholar 

  59. K.S. Aneesh-Kumar, R.N. Bhowmik, Micro-structural characterization and magnetic study of Ni1.5Fe1.5O4 ferrite synthesized through coprecipitation route at different pH values. Mater. Chem. Phys. 146, 159–169 (2014)

    Article  CAS  Google Scholar 

  60. Y. Köseoǧlu, F. Alan, M. Tan, R. Yilgin, M. Öztürk, Low temperature hydrothermal synthesis and characterization of Mn doped cobalt ferrite nanoparticles. Ceram. Int. 38, 3625–3634 (2012)

    Article  CAS  Google Scholar 

  61. Y. Feng, M.O. Lai, L. Lu, Enhanced multiferroic properties and valence effect of Ru-doped BiFeO3 thin films. J. Phys. Chem C 114(15), 6994–6998 (2010)

    Article  CAS  Google Scholar 

  62. C.N. Chervin, B.J. Clapsaddle, H.W. Chiu et al., Role of cyclic ether and solvent in a non-alkoxide sol-gel synthesis of yttria-stabilized zirconia nanoparticles. Chem. Mater. 18, 4865–4874 (2006)

    Article  CAS  Google Scholar 

  63. J. Wang, C. Zeng, Z. Peng, Q. Chen, Synthesis and magnetic properties of Zn1−xMnxFe2O4 nanoparticles. Phys. B 349, 124–128 (2004)

    Article  CAS  Google Scholar 

  64. M. Schieber, S. Foner, R. Dodo, E.J. McNiff Jr., J. Appl. Phys. 39, 885 (1968)

    Article  CAS  Google Scholar 

  65. E. Bucher, P.H. Schmidt, A. Jayaraman, K. Andres, J.P. Maita, P.D. Dernier, Phys. Rev. 132, 3911 (1970)

    Article  Google Scholar 

  66. I. Dzyaloshinskii, J. Phys. Chem. Solids 4, 241 (1958)

    Article  Google Scholar 

  67. T. Moriya, Phys. Rev. 120, 91 (1960)

    Article  CAS  Google Scholar 

  68. J.T. Zhang, X.M. Lu, J. Zhou et al., Origin of magnetic anisotropy and spiral spin order in multiferroic BiFeO3. Appl Phys Lett. 100, 242413 (2012)

    Article  CAS  Google Scholar 

  69. M. J. Pourhosseini asl. A. Ghasemi, G.R. Gordani, Structural and magnetic properties of Mn-Ni-Cu substitution of Z-type barium hexaferrite nanoparticles prepared by the coprecipitation method. J. Superlattice Nov. Magn. 28, 109–115 (2015).

  70. T. Ibusuki, S. Kojima, O. Kitakami, Y. Shimada, Magnetic anisotropy and behaviors of Fe nanoparticles. IEEE. Trans. Magn. 37, 2223–2225 (2001)

    Article  CAS  Google Scholar 

  71. S.S. Jadhav, S.E. Shirsath, S.M. Patange, K.M. Jadhav, Effect of Zn substitution on magnetic properties of nanocrystalline cobalt ferrites. J. Appl Phys. 108, 2–6 (2010)

    Article  CAS  Google Scholar 

  72. E.E. Ateia, F.S. Soliman, Modification of Co/Cu nanoferrites properties via Gd3+/ Er3+ doping. Appl. Phys. A. 123, 312 (2017)

    Article  CAS  Google Scholar 

  73. J.M.D. Coey, Rare-Earth Iron Permanent Magnets (Oxford University Press, New York, 1996).

    Google Scholar 

  74. I.P. Muthuselvam, R.N. Bhowmik, Mechanical alloyed Ho3+ doping in CoFe2O4 spinel ferrite and understanding of magnetic nanodomains. J. Magn. Magn. Mater. 322, 767–776 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aimin Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suo, N., Sun, A., Yu, L. et al. Effect of different rare earth (RE = Y3+, Sm3+, La3+, and Yb3+) ions doped on the magnetic properties of Ni–Cu–Co ferrite nanomagnetic materials. J Mater Sci: Mater Electron 32, 246–264 (2021). https://doi.org/10.1007/s10854-020-04762-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04762-0

Navigation