Skip to main content
Log in

High-performance copper mesh for optically transparent electromagnetic interference shielding

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A wide-spectrum high-transmittance copper mesh was designed and fabricated for effective shielding of electromagnetic waves. Using mask lithography and chemical etching, the copper mesh can be easily fabricated. The thickness of the copper mesh is uniform, whether at the crossing section and the copper wire. The average transmittance of the copper mesh from ultraviolet band to near-infrared band (200–2500 nm) is 96%, in agreement with the designed results. The electromagnetic interference shielding efficiency (EMI SE) is to 16 dB in Ku-band. The result of X-ray photoelectron spectroscopy analysis shows that a large amount of Cu2+ on the surface is reduced to Cu0 and Cu+ after annealing. As result, the EMI SE value of copper mesh has increased by 1.5 dB in Ku-band. We envision that the copper mesh can provide a good solution for optically transparent electromagnetic interference shielding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Liu, H.B. Zhang, R. Sun, Y. Liu, Z. Liu, A. Zhou, Z. Z. Yu, Hydrophobic, flexible, lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017)

    Article  Google Scholar 

  2. Y.D. Xu, Y.Q. Yang, H.J. Duan, J.F. Gao, D.X. Yan, G.Z. Zhao, Y.Q. Liu, Flexible and highly conductive sandwich nylon/nickel film for ultra-efficient electromagnetic interference shielding. Appl. Surf. Sci. 455, 856–863 (2018)

    Article  CAS  Google Scholar 

  3. W.Q. Wang, B.Y. Bai, Q. Zhou, K. Ni, H. Lin, Petal-shaped metallic mesh with high electromagnetic shielding efficiency and smoothed uniform diffraction. Opt. Mater. Express 8(11), 3485–3493 (2018)

    Article  CAS  Google Scholar 

  4. R.U. Hassan, F. Shahzad, N. Abbas, S. Hussain, Ceramic based multi walled carbon nanotubes composites for highly efficient electromagnetic interference shielding. J. Mater. Sci. Mater. Electron. 30, 13381–13388 (2019)

    Article  Google Scholar 

  5. L. Kheifets, A.A. Afifi, R. Shimkhada, Public health impact of extremely low-frequency electromagnetic fields. Environ. Health Perspect. 114, 1532–1537 (2006)

    Article  Google Scholar 

  6. D. Polley, A. Barman, R.K. Mitra, EMI shielding and conductivity of carbon nanotubepolymer composites at terahertz frequency. Opt. Lett. 39(6), 1541–1544 (2014)

    Article  CAS  Google Scholar 

  7. H. Wang, Z.G. Lu, Y.S. Liu, J.B. Tan, L.M. Ma, S. Lin, Double-layer interlaced nested multi-ring array metallic mesh for high-performance transparent electromagnetic interference shielding. Opt. Lett. 42(8), 1620–1623 (2017)

    Article  CAS  Google Scholar 

  8. M. Hu, J. Gao, Y. Dong, K. Li, G. Shan, S. Yang, R.K. Li, Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding. Langmuir 28(18), 7101–7106 (2012)

    Article  CAS  Google Scholar 

  9. E.H. Cho, J. Hwang, J. Kim, J. Lee, C. Kwak, C.S. Lee, Low-visibility patterning of transparent conductive silver-nanowire films. Opt. Express 23(20), 26095–26103 (2015)

    Article  CAS  Google Scholar 

  10. T.K. Gupta, B.P. Singh, R.B. Mathur, S.R. Dhakate, Multi-walled carbon nanotube- graphene-polyaniline multiphase nanocomposite with superior electromagnetic shielding effectiveness. Nanoscale 6(2), 842–851 (2014)

    Article  CAS  Google Scholar 

  11. S. Kim, J.S. Oh, M.G. Kim, W. Jang, M. Wang, Y. Kim, H.W. Seo, Y.C. Kim, J.H. Lee, Y. Lee, J.D. Nam, Electromagnetic interference (EMI) transparent shielding of reduced graphene oxide (RGO) interleaved structure fabricated by electrophoretic deposition. ACS Appl. Mater. Interfaces 6(20), 17647–17653 (2014)

    Article  CAS  Google Scholar 

  12. J. Han, X. Wang, Y. Qiu, J. Zhu, P. Hu, Infrared-transparent films based on conductive graphene network fabrics for electromagnetic shielding. Carbon 87, 206–214 (2015)

    Article  CAS  Google Scholar 

  13. Y. Jang, J. Kim, D. Byun, Invisible metal-grid transparent electrode prepared by electrohydrodynamic (EHD) jet printing. J. Phys. D 46(15), 155103 (2013)

    Article  Google Scholar 

  14. H. Wang, Z. Lu, J. Tan, Generation of uniform diffraction pattern and high EMI shielding performance by metallic mesh composed of ring and rotated sub-ring arrays. Opt. Express 24(20), 22989–23000 (2016)

    Article  CAS  Google Scholar 

  15. D.S. Hecht, L. Hu, G. Irvin, Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 23(13), 1482–1513 (2011)

    Article  CAS  Google Scholar 

  16. M. Layani, A. Kamyshny, S. Magdassi, Transparent con-ductors composed of nanomaterials. Nanoscale 6(11), 5581–5591 (2014)

    Article  CAS  Google Scholar 

  17. M.H. Al-Saleh, W.H. Saadeh, U. Sundararaj, EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study. Carbon 60, 146–156 (2013)

    Article  CAS  Google Scholar 

  18. M.S. Cao, X.X. Wang, W.Q. Cao, J. Yuan, Ultrathin graphene: electrical properties and highly efficient electromagnetic interference shielding. J. Mater. Chem. C 3, 6589–6599 (2015)

    Article  CAS  Google Scholar 

  19. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320(5881), 1308–1308 (2008)

    Article  CAS  Google Scholar 

  20. S.K. Hong, K.Y. Kim, T.Y. Kim, J.H. Kim, S.W. Park, J.H. Kim, B.J. Cho, Electromagnetic interference shielding effectiveness of monolayer graphene. Nanotechnology 23(45), 455704 (2012)

    Article  Google Scholar 

  21. Z.G. Lu, H.Y. Wang, J.B. Tan, L.M. Ma, S. Lin, Achieving an ultra-uniform diffraction pattern of stray light with metallic meshes by using ring and sub-ring arrays. Opt. Lett. 41(9), 1941–1944 (2016)

    Article  CAS  Google Scholar 

  22. K.D.M. Rao, G.U. Kulkarni, A highly crystalline single Au wire network as a high temperature transparent heater. Nanoscale 6(11), 5645–5651 (2014)

    Article  CAS  Google Scholar 

  23. Y. Han, Y.X. Liu, L. Han, J. Lin, P. Jin, High-performance hierarchical graphene/metal-mesh film for optically transparent electromagnetic interference shielding. Carbon 115, 34–42 (2017)

    Article  CAS  Google Scholar 

  24. Y. Han, Y.M. Liu, P. Jin, B. Liu, J. Ma, J.B. Tan, Optical-transparent Wi-Fi bandpass mesh-coated frequency selective surface. Electron. Lett. 50(5), 381–382 (2014)

    Article  Google Scholar 

  25. J.Y. Zou, H.L. Yip, S.K. Hau, A.K.Y. Jen, Metal grid/conducting polymer hybrid transparent electrode for inverted polymer solar cells. Appl. Phys. Lett. 96(20), 203301 (2010)

    Article  Google Scholar 

  26. Y. Lee, S.Y. Min, T.S. Kim, S.H. Jeong, J.Y. Won, H. Kim, W. Xu, J.K. Jeong, T.W. Lee, Versatile metal nanowiring platform for large-scale nano- and opto-electronic devices. Adv. Mater. 28(41), 9109–9116 (2016)

    Article  CAS  Google Scholar 

  27. S.Y. Min, Y.J. Lee, S.H. Kim, C. Park, T.W. Lee, Room-temperature-processable wire templated nanoelectrodes for flexible and transparent all-wire electronics. ACS Nano 11, 3681–3689 (2017)

    Article  CAS  Google Scholar 

  28. S.H. Ahn, ,L.J. Guo, Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting. ACS Nano 3(8), 2304–2310 (2009)

    Article  CAS  Google Scholar 

  29. C. Zhang, H. Subbaraman, Q. Li, Z. Pan, J.G. Ok, T. Ling, C. Chung, Printed photonic elements: nanoimprinting and beyond. J. Mater Chem. C 4(23), 5133–5153 (2016)

    Article  CAS  Google Scholar 

  30. M. Kohin, S.J. Wein, J.D. Traylor, R.C. Chase, J.E. Chapman, Analysis and design of transparent conductive coatings and filters. Opt. Eng. 32(5), 911–925 (1993)

    Article  CAS  Google Scholar 

  31. Y. Hong, C. Lee, C. Jeong, D. Lee, K. Kim, J. Joo, Method and apparatus to measure electromagnetic interference shielding efficiency and its shielding characteristics in broadband frequency ranges. Rev. Sci. Instrum. 74(2), 1098–1102 (2003)

    Article  CAS  Google Scholar 

  32. W.L. Song, M.S. Cao, M.M. Lu, S. Bi, L.Z. Fan, Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon 66, 67–76 (2014)

    Article  CAS  Google Scholar 

  33. J.W. Lim, J. Iijima, Y. Zhu, J.H. Yoo, G.S. Choi, K. Mimura, M. Isshiki, Nanoscale investigation of long-term native oxidation of Cu films. Thin Solid Films 516(12), 4040–4046 (2008)

    Article  CAS  Google Scholar 

  34. T. Tsoncheva, G. Issa, T. Blasco, P. Concepcion, M. Dimitrov, S. Hernandez, D. Kovacheva, G. Atanasova, J. M. Lopez Nieto, Silica supported copper and cerium oxide catalysts for ethyl acetate oxidation. J. Colloid Interface Sci. 404(32), 155–160 (2013)

    Article  CAS  Google Scholar 

  35. Z. Wang, B.Y. Mao, Q.L. Wang, J. Yu, J.X. Dai, R.G. Song, Z.H. Pu, D.P. He, Z. Wu, S.C. Mu, Ultrahigh conductive copper/large flake size graphene heterostructure thin-film with remarkable electromagnetic interference shielding effectiveness. Small 14(20), 1704332 (2018)

    Article  Google Scholar 

  36. F. Severino, J.L. Brito, J. Laine, J.L.G. Fierro, A.L.ópez Agudo, Nature of copper active sites in the carbon monoxide oxidation on CuAl2O4 and CuCr2O4 spinel type catalysts. J. Catal. 177(1), 82–95 (1998)

    Article  CAS  Google Scholar 

  37. P. Dubot, D. Jousset, V. Pinet, F. Pellerin, J.P. Langeron, Simulation of the lmm auger spectra of copper. Surf. Interface Anal. 12(2), 99–104 (1988)

    Article  Google Scholar 

  38. J. Pal, M. Ganguly, C. Mondal, A. Roy, T. Pal, Crystal-plane-dependent etching of cuprous oxide nanoparticles of varied shapes and their application in visible light photocatalysis. J. Phys. Chem. C 117(46), 24640–24653 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Key Industry Innovation Chain Project of Shaanxi Provincial Science and the Technology Department (2018ZDCXL-GY-08-02-01), Xi'an Key Laboratory of Intelligent Detection and Perception (201805061ZD12CG45), Dean Fund Program from School of Optoelectronic Engineering, Xi'an Technological University (2019GDYJY01) and Shaanxi International Science and Technology Cooperation and Exchange Program Project (2018KWZ-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, K., Su, J., Hu, K. et al. High-performance copper mesh for optically transparent electromagnetic interference shielding. J Mater Sci: Mater Electron 31, 11646–11653 (2020). https://doi.org/10.1007/s10854-020-03716-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03716-w

Navigation