Skip to main content
Log in

Novel approach to prepare carbon-encapsulated CIPs@FeO composite for efficient absorption of low-frequency microwave

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Due to the urgently demand of microwave absorption materials in the low-frequency band, herein the CIPs@FeO@C multilayer core–shell composite with advisable low-frequency microwave absorption performance has been successfully synthesized by a novel co-calcine, high temperature thermal diffusion and reduction method. The excellent attenuation characteristic, good impedance matching property, efficient eddy current loss, Debye relaxation and interfacial polarization etc. contribute to this desirable low-frequency electromagnetic absorption performance. The broadest effective absorption bandwidth in low-frequency range is 1.2 GHz and the maximum RL is − 24.64 dB at 1.88 GHz for 4 mm and 6 mm, respectively. The as-prepared ternary composite has a great potential in production of low-frequency microwave absorption materials for the delightful performance and economical preparation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Z. Jia, D. Lan, K. Lin, M. Qin, K. Kou, G. Wu, H. Wu, Progress in low-frequency microwave absorbing materials. J. Mater. Sci. Mater. Electron. 29, 17122–17136 (2018)

    CAS  Google Scholar 

  2. X. Zhang, J. Xiang, Z. Wu, L. Gong, X. Chen, G. Guan, Y. Wang, K. Zhang, Enhanced absorbing properties and structural design of microwave absorbers based on Ni0.8Co0.2Fe2O4 nanofibers and Ni-C hybrid nanofibers. J. Alloys Compd. 764, 691–700 (2018)

    CAS  Google Scholar 

  3. D. Lan, M. Qin, R. Yang, S. Chen, H. Wu, Y. Fan, Q. Fu, F. Zhang, Facile synthesis of hierarchical chrysanthemum-like copper cobaltate-copper oxide composites for enhanced microwave absorption performance. J. Colloid Inter. Sci. 533, 481–491 (2019)

    CAS  Google Scholar 

  4. Z. Jia, K. Lin, G. Wu, H. Xing, H. Wu, Recent progresses of high-temperature microwave-absorbing materials. NANO 13, 1830005 (2018)

    CAS  Google Scholar 

  5. H. Wu, G. Wu, Y. Ren, L. Yang, L. Wang, X. Li, Co2+/Co3+ ratio dependence of electromagnetic wave absorption in hierarchical NiCo2O4-CoNiO2 hybrids. J Mater. Chem. C 3, 7677–7690 (2015)

    CAS  Google Scholar 

  6. J. Xiang, Z. Hou, X. Zhang, L. Gong, Z. Wu, J. Mi, Facile synthesis and enhanced microwave absorption properties of multiferroic Ni0.4Co0.2Zn0.4Fe2O4/BaTiO3 composite fibers. J. Alloys Compd. 737, 412–420 (2018)

    CAS  Google Scholar 

  7. R. Shu, G. Zhang, J. Zhang, X. Wang, M. Wang, Y. Gan, J. Shi, J. He, Synthesis and high-performance microwave absorption of reduced graphene oxide/zinc ferrite hybrid nanocomposite. Mater. Lett. 215, 229–232 (2018)

    CAS  Google Scholar 

  8. R. Shu, W. Li, Y. Wu, J. Zhang, G. Zhang, Nitrogen-doped Co-C/MWCNTs nanocomposites derived from bimetallic metal-organic frameworks for electromagnetic wave absorption in the X-band. Chem. Eng. J. 362, 513–524 (2019)

    CAS  Google Scholar 

  9. X. Zhang, Y. Zhang, B. Tian, Y. Jia, M. Fu, Y. Liu, K. Song, A.A. Volinsky, X. Yang, H. Sun, Graphene oxide effects on the properties of Al2O3-Cu/35W5Cr composite. J. Mater. Sci. Technol. 37, 185–199 (2020)

    Google Scholar 

  10. M.M. Ismail, S.N. Rafeeq, J.M.A. Sulaiman, A. Mandal, Electromagnetic interference shielding and microwave absorption properties of cobalt ferrite CoFe2O4/polyaniline composite. Appl. Phys. A 124, 380 (2018)

    Google Scholar 

  11. S. Yun, A. Kirakosyan, S. Surabhi, J.R. Jeong, J. Choi, Controlled morphology of MWCNTs driven by polymer-grafted nanoparticles for enhanced microwave absorption. J. Mater. Chem. C 5, 8436–8443 (2017)

    CAS  Google Scholar 

  12. O. Khani, M.Z. Shoushtari, K. Ackland, P. Stamenov, The structural, magnetic and microwave properties of spherical and flake shaped carbonyl iron particles as thin multilayer microwave absorbers. J. Magn. Magn. Mater. 428, 28–35 (2017)

    CAS  Google Scholar 

  13. Y. Xu, L. Yuan, Z. Liang, X. Wang, X. Li, A wide frequency absorbing material added CIPs using the fuse deposition modeling. J. Alloys Compd. 704, 593–598 (2017)

    CAS  Google Scholar 

  14. W. Hong, S. Dong, P. Hua, X. Luo, S. Du, In situ growth of one-dimensional nanowires on porous PDC-SiC/Si3N4 ceramics with excellent microwave absorption properties. Ceram. Inter. 43, 14301–14308 (2017)

    CAS  Google Scholar 

  15. L. Gao, W. Zhou, F. Luo, D. Zhu, J. Wang, Dielectric and microwave absorption properties of KNN/Al2O3 composite ceramics. Ceram. Inter. 43, 12731–12735 (2017)

    CAS  Google Scholar 

  16. R.B. Yang, W.F. Liang, Microwave properties of high-aspect-ratio carbonyl iron/epoxy absorbers. J. Appl. Phys. 109, 07A311 (2011)

    Google Scholar 

  17. Y. Zuo, Z. Yao, H. Lin, J. Zhou, J. Lu, J. Ding, Digital light processing 3D printing of graphene/carbonyl iron/polymethyl methacrylate nanocomposites for efficient microwave absorption. Compos. Part B 179, 107533 (2019)

    CAS  Google Scholar 

  18. J. Dong, W. Zhou, C. Wang, L. Lu, F. Luo, D. Zhu, Anisotropic particle geometry effect on magnetism and microwave absorption of carbonyl iron/polyimide composites. J. Magn. Magn. Mater. 491, 165643 (2019)

    CAS  Google Scholar 

  19. X. Chai, D. Zhu, D. Min, W. Zhou, Y. Qing, F. Luo, Flexible thin microwave absorbing patch: flake carbonyl iron and chopped carbon fibers oriented in resin matrix. J. Mater. Sci. Mater. Electron. 31, 1442–1450 (2020)

    CAS  Google Scholar 

  20. H. Nan, Y. Qing, H. Gao, H. Jia, F. Luo, W. Zhou, Synchronously oriented Fe microfiber & flake carbonyl iron/epoxy composites with improved microwave absorption and lightweight feature. Compos. Sci. Technol. 184, 107882 (2019)

    CAS  Google Scholar 

  21. W. Dai, F. Chen, H. Luo, Y. Xiong, X. Wang, Y. Cheng, R. Gong, Synthesis of yolk-shell structured carbonyl iron@void@nitrogen doped carbon for enhanced microwave absorption performance. J. Alloys Compd. 812, 152083 (2020)

    CAS  Google Scholar 

  22. A.M. Nicolson, G.F. Ross, Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Trans. Instrum. Meas. 19, 377–382 (1970)

    Google Scholar 

  23. W.B. Weir, Automatic measurement of complex dielectric constant and permeability at microwave frequencies. Proc. IEEE 62, 33–36 (1974)

    Google Scholar 

  24. M. Qin, D. Lan, J. Liu, H. Liang, L. Zhang, H. Xing, T. Xu, H. Wu, Synthesis of single-component metal oxides with controllable multi-shelled structure and their morphology-related applications. Chem. Rec. 20, 102–119 (2020)

    CAS  Google Scholar 

  25. D. Lan, M. Qin, R. Yang, H. Wu, Z. Jia, K. Kou, G. Wu, Y. Fan, Q. Fu, F. Zhang, Synthesis, characterization and microwave transparent properties of Mn3O4 microspheres. J. Mater. Sci. Mater. Electron. 30, 8771–8776 (2019)

    CAS  Google Scholar 

  26. P. Liu, V.M.H. Ng, Z. Yao, J. Zhou, Y. Lei, Z. Yang, H. Lv, L.B. Kong, Facile synthesis and hierarchical assembly of flowerlike NiO structures with enhanced dielectric and microwave absorption properties. ACS Appl. Mater. Inter. 9, 16404–16416 (2017)

    CAS  Google Scholar 

  27. Y. Du, W. Liu, R. Qiang, Y. Wang, X. Han, J. Ma, P. Xu, Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites. ACS Appl. Mater. Inter. 6, 12997–13006 (2014)

    CAS  Google Scholar 

  28. M. Qiao, X. Lei, Y. Ma, L. Tian, X. He, K. Su, Q. Zhang, Application of yolk-shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material. Nano Res. 11, 1500–1519 (2018)

    CAS  Google Scholar 

  29. R. Li, T. Wang, G.G. Tan, W.L. Zuo, J.Q. Wei, L. Qiao, F.S. Li, Microwave absorption properties of oriented Pr2Fe17N3-δ particles/paraffin composite with planar anisotropy. J. Alloys Compd. 586, 239–243 (2014)

    CAS  Google Scholar 

  30. X.F. Liu, X.R. Cui, Y.X. Chen, X.J. Zhang, R.H. Yu, G.S. Wang, H. Ma, Modulation of electromagnetic wave absorption by carbon shell thickness in carbon encapsulated magnetite nanospindles-poly (vinylidene fluoride) composites. Carbon 95, 870–878 (2015)

    CAS  Google Scholar 

  31. H. Wu, G. Wu, L. Wang, Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: facile synthesis and electromagnetic properties. Powder Technol. 269, 443–451 (2015)

    CAS  Google Scholar 

  32. I.S. Lyubutin, C.R. Lin, Y.T. Tseng, A. Spivakov, A.O. Baskakov, S.S. Starchikov, K.O. Funtov, C.J. Jhang, Y.J. Tsai, H.S. Hsu, Structural and magnetic evolution of FexOy@carbon core-shell nanoparticles synthesized by a one-step thermal pyrolysis. Mater. Charact. 150, 213–219 (2019)

    CAS  Google Scholar 

  33. A. Kozioł-Rachwał, W. Janus, M. Szpytma, P. Dróżdż, M. Ślęzak, K. Matlak, M. Gajewska, T. Ślęzak, J. Korecki, Interface engineering towards enhanced exchange interaction between Fe and FeO in Fe/MgO/FeO epitaxial heterostructures. Appl. Phys. Lett. 115, 141603 (2019)

    Google Scholar 

  34. J. Fang, T. Liu, Z. Chen, Y. Wang, W. Wei, X. Yue, Z. Jiang, A wormhole-like porous carbon/magnetic particles composite as an efficient broadband electromagnetic wave absorber. Nanoscale 8, 8899–8909 (2016)

    CAS  Google Scholar 

  35. Q. Long, Z. Xu, H. Xiao, K. Xie, A facile synthesis of a cobalt nanoparticle-graphene nanocomposite with high-performance and triple-band electromagnetic wave absorption properties. RSC Adv. 8, 1210–1217 (2018)

    CAS  Google Scholar 

  36. Y. Lei, Z. Yao, H. Lin, J. Zhou, A.A. Haidry, P. Liu, The effect of polymerization temperature and reaction time on microwave absorption properties of Co-doped ZnNi ferrite/polyaniline composites. RSC Adv. 8, 29344–29355 (2018)

    CAS  Google Scholar 

  37. B. Zhao, X.Q. Guo, W.Y. Zhao, J.H. Deng, B.B. Fan, G. Shao, Z.Y. Bai, R. Zhang, Facile synthesis of yolk-shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/Kirkendall effect and their enhanced microwave absorption properties. Nano Res. 10(1), 331–343 (2017)

    CAS  Google Scholar 

  38. H. Wang, D. Zhu, X. Wang, F. Luo, Influence of silicon carbide fiber (SiCf) type on the electromagnetic microwave absorbing properties of SiCf/epoxy composites. Compos. Part A 93, 10–17 (2017)

    CAS  Google Scholar 

  39. T. Liu, N. Liu, S. Zhai, S. Gao, Z. Xiao, Q. An, D. Yang, Tailor-made core/shell/shell-like Fe3O4@SiO2@PPy composites with prominent microwave absorption performance. J. Alloys Compd. 779, 831–843 (2019)

    CAS  Google Scholar 

  40. H. Lv, H. Zhang, J. Zhao, G. Ji, Y. Du, Achieving excellent bandwidth absorption by a mirror growth process of magnetic porous polyhedron structures. Nano Res. 6, 1813–1822 (2016)

    Google Scholar 

  41. H. Lv, G. Ji, W. Liu, H. Zhang, Y. Du, Achieving hierarchical hollow carbon@Fe@Fe3O4 nanospheres with superior microwave absorption properties and lightweight features. J. Mater. Chem. C 3, 10232–10241 (2015)

    CAS  Google Scholar 

  42. Z.J. Guan, J.T. Jiang, N. Chen, Y.X. Gong, L. Zhen, Carbon-coated CoFe-CoFe2O4 composite particles with high and dual-band electromagnetic wave absorbing properties. Nanotechnology 29, 305604 (2018)

    Google Scholar 

  43. M. Zong, Y. Huang, Y. Zhao, X. Sun, C. Qu, D. Luo, J. Zheng, Facile preparation, high microwave absorption and microwave absorbing mechanism of RGO-Fe3O4 composites. RSC Adv. 3, 23638–23648 (2013)

    CAS  Google Scholar 

  44. T. Liu, L. Zhou, D. Zheng, Y. Xu, Absorption property of C@CIPs composites by the mechanical milling process. Appl. Phys. A 123, 565 (2017)

    Google Scholar 

  45. X. Weng, X. Lv, B. Li, Y. Zhang, H. Lou, P. Zhu, G. Gu, One-pot preparation of reduced graphene oxide/carbonyl iron/polyvinyl pyrrolidone ternary nanocomposite and its synergistic microwave absorbing properties. Mater. Lett. 188, 280–283 (2017)

    CAS  Google Scholar 

  46. Y. Xu, J. Luo, W. Yao, J. Xu, T. Li, Preparation of reduced graphene oxide/flake carbonyl iron powders/polyaniline composites and their enhanced microwave absorption properties. J. Alloys Compd. 636, 310–316 (2015)

    CAS  Google Scholar 

  47. X. Weng, B. Li, Y. Zhang, X. Lv, G. Gu, Synthesis of flake shaped carbonyl iron/reduced graphene oxide/polyvinyl pyrrolidone ternary nanocomposites and their microwave absorbing properties. J. Alloys Compd. 695, 508–519 (2017)

    CAS  Google Scholar 

  48. D. Min, W. Zhou, Y. Qing, F. Luo, D. Zhu, Greatly enhanced microwave absorption properties of highly oriented flake carbonyl iron/epoxy resin composites under applied magnetic field. J. Mater. Sci. 52, 2373–2383 (2017)

    CAS  Google Scholar 

  49. P. Ji, G. Xie, N. Xie, J. Li, J. Chen, J. Chen, Microwave absorbing properties of flaky carbonyl iron powder prepared by rod milling method. J. Electron. Mater. 48, 2495–2500 (2019)

    CAS  Google Scholar 

  50. Z.T. Zhu, X. Sun, H.R. Xue, H. Guo, X.L. Fan, X.C. Pan, J.P. He, Graphene-carbonyl iron cross-linked composites with excellent electromagnetic wave absorption properties. J. Mater. Chem. C 2, 6582–6591 (2014)

    CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Grants from National Natural Science Foundation of China (Nos. 61701050 and 51704242), the Project of Sichuan Provincial Department of Education (No. 2018Z073), and the Natural Science Foundation of Shaanxi Province in China (No. 2018JM5094).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengfei Yin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, P., Zhang, L., Sun, P. et al. Novel approach to prepare carbon-encapsulated CIPs@FeO composite for efficient absorption of low-frequency microwave. J Mater Sci: Mater Electron 31, 11059–11070 (2020). https://doi.org/10.1007/s10854-020-03655-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03655-6

Navigation