Skip to main content

Advertisement

Log in

Cleverly embedded CoS2/NiS2 on two-dimensional graphene nanosheets as high-performance anode material for improved sodium ion batteries and sodium ion capacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The CoS2/NiS2-RGO composite with excellent electrochemical performance is first used as an anode material for sodium-ion capacitors (SICs) and sodium-ion batteries (SIBs). CoS2/NiS2-RGO is prepared by one-step hydrothermal process. In half-cell tests, CoS2/NiS2-RGO exhibits a remarkably high reversible capacity of 473.7 mA h g−1 after 50 cycles at the specific current of 100 mA g−1. SICs show an impressive energy density of 139.1 W h kg−1 at the power density of 14,000 W kg−1, which has great advantages compare to the commercial lithium ion batteries. SIBs also show a good capacity of 50 mA h g−1 at a rate of 5 °C. The excellent electrochemical performance of CoS2/NiS2-RGO is mainly attributed to the heterostructure formed by CoS2 and NiS2, which effectively improves the electrical conductivity. On the other hand, there is a good synergistic effect between RGO and CoS2/NiS2. The large specific surface area of RGO makes CoS2/NiS2 disperse uniformly on the surface of RGO, preventing agglomeration and reducing particle size of CoS2/NiS2. In turn, CoS2/NiS2 acting on the surface layer of RGO hinders the secondary overlap and increases the electrical conductivity of RGO. The mixed bimetallic sulfide/RGO system is expected to promote the rapid development of sodium storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S.B. Aziz, M.H. Hamsan, M.A. Brza, M.F.Z. Kadir, R.T. Abdulwahid, H.O. Ghareeb, H.J. Woo, Fabrication of energy storage EDLC device based on CS: PEO polymer blend electrolytes with high Li+ ion transference number. Results Phys. 15, 102584 (2019)

    Google Scholar 

  2. S.B. Aziz, M.A. Brza, P.A. Mohamed, M.F.Z. Kadir, M.H. Hamsan, R.T. Abdulwahid, H.J. Woo, Increase of metallic silver nanoparticles in Chitosan: AgNt based polymer electrolytes incorporated with alumina filler. Results Phys. 13, 102326 (2019)

    Google Scholar 

  3. S.B. Aziz, R.T. Abdulwahid, M.H. Hamsan, M.A. Brza, R.M. Abdullah, M.F.Z. Kadir, S.K. Muzakir, structural, impedance, and EDLC characteristics of proton conducting chitosan-based polymer blend electrolytes with high electrochemical stability. Molecules 24, 3508 (2019)

    CAS  Google Scholar 

  4. P.G. Bruce, B. Scrosati, J.M. Tarascon, Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2010)

    Google Scholar 

  5. A. Manthiram, Materials challenges and opportunities of lithium-ion batteries for electrical energy storage. J. Phys. Chem.Lett. 2, 176–184 (2011)

    CAS  Google Scholar 

  6. X. Kang, Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503 (2014)

    Google Scholar 

  7. J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001)

    CAS  Google Scholar 

  8. X.J. Xu, J. Liu, Z.B. Liu, J.D. Shen, R.Z. Hu, J.W. Liu, L.Z. Ouyang, L. Zhang, M. Zhu, Robust pitaya-structured pyrite as high energy density cathode for high-rate lithium batteries. ACS Nano 11, 9033–9040 (2017)

    CAS  Google Scholar 

  9. X.J. Xu, Z.B. Liu, S.M. Ji, Z.S. Wang, Z.Y. Ni, Y.Q. Lv, J.W. Liu, J. Liu, Rational synthesis of ternary FeS@TiO2@C nanotubes as anode for superior Na-ion batteries. Chem. Eng. J. 359, 765–774 (2019)

    CAS  Google Scholar 

  10. X.J. Xu, S.M. Ji, M.Z. Gu, J. Liu, In situ synthesis of MnS hollow microspheres on reduced graphene oxide sheets as high-capacity and long-life anodes for Li- and Na- ion batteries. ACS Appl. Mater. Interfaces 7, 20957 (2015)

    CAS  Google Scholar 

  11. L. Shen, H. Lv, S. Chen, P. Kopold, P.A.V. Aken, X. Wu, J. Maier, Y. Yan, Carbon nanowires: peapod-like Li3VO4/N-doped carbon nanowires with pseudocapacitive properties as advanced materials for high-energy lithium-ion capacitors. Adv. Mater. 29, 1700142 (2017)

    Google Scholar 

  12. D. Xu, D. Chao, H. Wang, Y. Gong, J.F. Hong, Flexible quasi-solid-state sodium-ion capacitors developed using 2D metal-organic-framework array as reactor. Adv. Energy Mater. 8, 1702769 (2018)

    Google Scholar 

  13. H. Che, S. Chen, Y. Xie, W. Hong, Z.F. Ma, Electrolyte design strategies and research progress for room-temperature sodium-ion batteries. Energy Environ. Sci. 10, 1075–1101 (2017)

    CAS  Google Scholar 

  14. R.R. Gaddam, D. Yang, R. Narayan, K. Raju, N.A. Kumar, X.S. Zhao, Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries. Nano Energy 26, 346–352 (2016)

    CAS  Google Scholar 

  15. H. Zhe, W. Lixiu, Z. Kai, W. Jianbin, C. Fangyi, T. Zhanliang, C. Jun, MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew. Chem. 126, 13008–13012 (2014)

    Google Scholar 

  16. Z. Changbao, M. Xiaoke, P.A. Aken, Y. Van, M.J. Yan, Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew. Chem. Int. Ed. 53, 2152–2156 (2014)

    Google Scholar 

  17. R. Xianhong, T. Huiteng, Y. Qingyu, Nanostructured metal sulfides for energy storage. Nanoscale 6, 9889–9924 (2014)

    Google Scholar 

  18. H. Kang, Y. Liu, K. Cao, Z. Yan, L.F. Jiao, Y. Wang, H. Yuan, Update on anode materials for Na-ion batteries. J. Mater. Chem. A 3, 17899–17913 (2015)

    CAS  Google Scholar 

  19. Z. Li, W. Feng, Y. Lin, X. Liu, H. Fei, Flaky CoS2 and graphene nanocomposite anode materials for sodium-ion batteries with improved performance. RSC Adv. 6, 70632–70637 (2016)

    CAS  Google Scholar 

  20. X. Xu, R. Zhao, W. Ai, B. Chen, T. Yu, Controllable design of MoS2 nanosheets anchored on nitrogen-doped graphene: toward fast sodium storage by tunable pseudocapacitance. Adv. Mater. 30, 1800658 (2018)

    Google Scholar 

  21. Q. Wei, T. Chen, T. Lu, D.H.C. Chua, L. Pan, Layered nickel sulfide-reduced graphene oxide composites synthesized via microwave-assisted method as high performance anode materials of sodium-ion batteries. J. Power Sources 302, 202–209 (2016)

    Google Scholar 

  22. L.L. Tian, S.B. Li, M.J. Zhang, S.K. Li, L.P. Lin, J.X. Zheng, Q.C. Zhuang, K. Amine, F. Pan, Cascading boost effect on the capacity of nitrogen-doped graphene sheets for Li- and Na-ion batteries. ACS Appl. Mater. Interfaces 8, 26722–26729 (2016)

    CAS  Google Scholar 

  23. A.-L.H. Markus Krengel, M. Kaus, S. Indris, N. Wolff, L. Kienle, D. Westfal, W. Bensch, CuV2S4: a high rate-capacity and stable anode material for sodium-ion batteries. ACS Appl. Mater. Interfaces 9, 21283–21291 (2017)

    Google Scholar 

  24. X. Wang, X. Li, Q. Li, H. Li, J. Xu, H. Wang, G. Zhao, L. Lu, X. Lin, H. Li, S. Li, Improved electrochemical performance based on nanostructured SnS2@CoS2-rGO composite anode for sodium-ion batteries. Nano-Micro Lett. 10, 91–102 (2018)

    Google Scholar 

  25. T. Wang, P. Hu, C. Zhang, H. Du, Z. Zhang, X. Wang, S. Chen, J. Xiong, G. Cui, Nickel disulfide-graphene nanosheets composites with improved electrochemical performance for sodium ion battery. ACS Appl. Mater. Interfaces 8, 7811–7817 (2016)

    CAS  Google Scholar 

  26. H. Xu, J. Liu, Y. Chen, C.L. Li, J. Tang, Q. Li, Synthesis of three-dimensional nitrogen-doped graphene/polyaniline hydrogels for high performance supercapacitor applications. J. Mater. Sci. Mater. Electron. 28, 10674–10683 (2017)

    CAS  Google Scholar 

  27. W. Ren, Z. Zheng, X. Chang, C. Niu, Q. Wei, Q. An, K. Zhao, M. Yan, M. Qin, L. Mai, Self-sacrificed synthesis of three-dimensional Na3V2(PO4)3 nanofiber network for high-rate sodium–ion full batteries. Nano Energy 25, 145–153 (2016)

    CAS  Google Scholar 

  28. D.S. Mhamane, V. Aravindan, M.S. Kim, H.K. Kim, K.C. Roh, D. Ruan, S.H. Lee, M. Srinivasan, K.B. Kim, Silica assisted bottom-up synthesis of graphene like high surface area carbon for highly efficient ultracapacitor and Li-ion hybrid capacitor applications. J. Mater. Chem. A 4, 5578–5591 (2016)

    CAS  Google Scholar 

  29. L. Yan, G. Chen, S. Sarker, S. Richins, H. Wang, W. Xu, X. Rui, H. Luo, Ultrafine Nb2O5 nanocrystal coating on reduced graphene oxide as anode material for high performance sodium ion battery. ACS Appl. Mater. Interfaces 8, 22213–22219 (2016)

    CAS  Google Scholar 

  30. Y. Li, H.X. Zhang, F.T. Liu, X.F. Dong, X. Li, C.W. Wang, New design of oriented NiS nanoflower arrays as platinum-free counter electrode for high-efficient dye-sensitized solar cells. Superlattices Microstruct. 125, 66–71 (2019)

    CAS  Google Scholar 

  31. R.M. Sun, S.J. Liu, Q.L. Wei, J.Z. Sheng, S.H. Zhu, Q.Y. An, L.Q. Mai, Mesoporous NiS2 nanospheres anode with pseudocapacitance for high-rate and long-life sodium-ion battery. Small 13, 1701744 (2017)

    Google Scholar 

  32. Z. Liu, Q. Liu, Y. Huang, Y. Ma, S. Yin, X. Zhang, W. Sun, Y. Chen, Organic photovoltaic devices based on a novel acceptor material: graphene. Adv. Mater. 20, 3924–3930 (2010)

    Google Scholar 

  33. H.W. Jia Ding, Z.L.A. Kohandehghan, K. Cui, Z. Xu, B. Zahiri, X. Tan, E.M. Lotfabad, B.C. Olsen, D. Mitlin, Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 12, 11004–11015 (2013)

    Google Scholar 

  34. R.R. Gaddam, A.H.F. Niaei, M. Hankel, D.J. Bernhardt, A.K. Nanjundan, X.S. Zhao, Capacitance-enhanced sodium-ion storage in nitrogen-rich hard carbon. J. Mater. Chem. A 5, 22186 (2017)

    CAS  Google Scholar 

  35. L.S. Price, I.P. Parkin, A.M.E. Hardy, R.J.H. Clark, T.G. Hibbert, K.C. Molloy, Atmospheric pressure chemical vapor deposition of tin sulfides (SnS, Sn2S3, and SnS2) on glass. Cheminform 11, 1792–1799 (1999)

    CAS  Google Scholar 

  36. P. Sun, L. Tian, Z. Zuo, Z. Chen, N. Huang, Y. Sun, X. Sun, Low-crystalline NiS hybridized with BiOCl nanosheet as highly efficient electrocatalyst for dye-sensitized solar cells. ChemistrySelect 3, 11716–11723 (2018)

    CAS  Google Scholar 

  37. S.D. Seo, D. Park, S. Park, D.W. Kim, “Brain-coral-like” mesoporous hollow CoS2@N-doped graphitic carbon nanoshells as efficient sulfur reservoirs for lithium–sulfur batteries. Adv. Funct. Mater. 29, 1903712 (2019)

    Google Scholar 

  38. L. Fang, Y. Zhang, Y. Guan, H. Zhang, S. Wang, Y. Wang, Specific synthesis of CoS2 nanoparticles embedded in porous Al2O3 nanosheets for efficient hydrogen evolution and enhanced lithium storage. J. Mater. Chem. A 5, 2861–2869 (2017)

    CAS  Google Scholar 

  39. Y. Zhang, C. Lv, X. Wang, S. Chen, D. Li, Z. Peng, D. Yang, Boosting sodium-ion storage by encapsulating NiS (CoS) hollow nanoparticles into carbonaceous fibers. ACS Appl. Mater. Interfaces 10, 40531–40539 (2018)

    CAS  Google Scholar 

  40. X. Liu, K. Zhang, K. Lei, F. Li, Z. Tao, J. Chen, Facile synthesis and electrochemical sodium storage of CoS2 micro/nano-structures. Nano Res. 9, 198–206 (2016)

    CAS  Google Scholar 

  41. Z. Wang, X. Li, Y. Yang, Y. Cui, H. Pan, Z. Wang, B. Chen, G. Qian, Highly dispersed β-NiS nanoparticles in porous carbon matrices by a template metal–organic framework method for lithium-ion cathode. J. Mater. Chem. A 2, 7912–7916 (2014)

    CAS  Google Scholar 

  42. S. Peng, X. Han, L. Li, Z. Zhu, F. Cheng, M. Srinivansan, S. Adams, S. Ramakrishna, Unique cobalt sulfide/reduced graphene oxide composite as an anode for sodium-ion batteries with superior rate capability and long cycling stability. Small 12, 1359–1368 (2016)

    CAS  Google Scholar 

  43. L. Shi, D. Li, P. Yao, J. Yu, C. Li, B. Yang, C. Zhu, J. Xu, SnS2 Nanosheets coating on nanohollow cubic CoS2/C for ultralong life and high rate capability half/full sodium-ion batteries. Small 14, e1802716 (2018)

    Google Scholar 

  44. J.B. Cook, H.S. Kim, Y. Yan, J.S. Ko, S. Robbennolt, B. Dunn, S.H. Tolbert, Mesoporous MoS2 as a transition metal dichalcogenide exhibiting pseudocapacitive Li and Na-ion charge storage. Adv. Energy Mater. 6, 1–12 (2016)

    Google Scholar 

  45. X. Xia, D. Chao, Y. Zhang, J. Zhan, Y. Zhong, X. Wang, Y. Wang, Z.X. Shen, J. Tu, H.J. Fan, Generic synthesis of carbon nanotube branches on metal oxide arrays exhibiting stable high-rate and long-cycle sodium-ion storage. Small 12, 3048–3058 (2016)

    CAS  Google Scholar 

  46. Y. Lin, Z. Qiu, D. Li, S. Ullah, Y. Hai, H. Xin, W. Liao, Y. Bo, H. Fan, X. Jian, NiS2@CoS2 nanocrystals encapsulated in N-doped carbon nanocubes for high performance lithium/sodium ion batteries. Energy Storage Mater. 11, 67–74 (2017)

    Google Scholar 

  47. Y. Hao, S. Wang, Y. Shao, Y. Wu, S. Miao, High-energy density Li-ion capacitor with layered SnS2/reduced graphene oxide anode and BCN nanosheet cathode. Adv. Energy Mater. (2019). https://doi.org/10.1002/aenm.201902836

    Article  Google Scholar 

  48. Z. Tong, S. Liu, Y. Zhou, J. Zhao, Y. Wu, Y. Wang, Y. Li, Rapid redox kinetics in uniform sandwich-structured mesoporous Nb2O5/graphene/mesoporous Nb2O5 nanosheets for high-performance sodium-ion supercapacitors. Energy Storage Mater. 13, 223–232 (2018)

    Google Scholar 

  49. S. Dong, Y. Xu, L. Wu, H. Dou, X. Zhang, Surface-functionalized graphene-based quasi-solid-state Na-ion hybrid capacitors with excellent performance. Energy Storage Mater. 11, 8–15 (2018)

    Google Scholar 

  50. L. Gao, S. Chen, L. Zhang, X. Yang, High performance sodium ion hybrid supercapacitors based on Na2Ti3O7 nanosheet arrays. J. Alloy. Compd. 766, 284–290 (2018)

    CAS  Google Scholar 

  51. Y. Li, Y. Yang, J. Zhou, S. Lin, Z. Xu, Y. Xing, Y. Zhang, J. Feng, Z. Mu, P. Li, Y. Chao, S. Guo, Coupled and decoupled hierarchical carbon nanomaterials toward high-energy-density quasi-solid-state Na-Ion hybrid energy storage devices. Energy Storage Mater. 23, 530–538 (2019)

    Google Scholar 

  52. F.M. Auxilia, J. Jang, K. Jang, H. Song, M.-H. Ham, Au@TiO2/reduced graphene oxide nanocomposites for lithium-ion capacitors. Chem. Eng. J. 362, 136–143 (2019)

    CAS  Google Scholar 

  53. C. Li, X. Zhang, K. Wang, X. Sun, Y. Ma, A 293 Wh kg-1 and 6 kW kg-1 pouch-type lithium-ion capacitor based on SiOx/graphite composite anode. J. Power Sources 414, 293–301 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 51971104, 51762031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling-Bin Kong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 313 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Xu, YG. & Kong, LB. Cleverly embedded CoS2/NiS2 on two-dimensional graphene nanosheets as high-performance anode material for improved sodium ion batteries and sodium ion capacitors. J Mater Sci: Mater Electron 31, 9946–9959 (2020). https://doi.org/10.1007/s10854-020-03541-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03541-1

Navigation