Skip to main content
Log in

Effect of micro-nano additives on breakdown, surface tracking and mechanical performance of ethylene propylene diene monomer for high voltage insulation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ethylene propylene diene monomer (EPDM) is a polymer widely used for insulation in high voltage outdoor insulators and cables. It is well accepted that appropriate addition of micron particles to form a composite can enhance its insulation performance. This work reports improvement on the dielectric breakdown strength, tracking failure time, mechanical properties and volume resistivity of EPDM composites co-filled with boron nitride (BN) micron and nano–particles. Test specimens were fabricated by melt-blending and hot press techniques. AC breakdown tests were performed as per IEC60243-1 Standard. The tracking test was performed following IEC 60587 Standard and volume resistivity measurement as per ASTM D257. Experimental results show improvement in electrical properties with increasing particle loading up to a certain dosage but enhancement in the mechanical properties is observed up to 30 wt% particles addition. The co-filled composite exhibits considerably higher dielectric breakdown strength (89.24 kV/mm) and volume resistivity (~ 5.0 × 1015 Ω cm) relative to Micro-20 wt%. The tracking failure time of the co-filled is much improved due to excellent resistance against dry band arcing and thermal accumulation in the discharge region. Moreover, co-filled composites show improvement in mechanical properties as compared to the micron–filled counterparts. The improved thermal conductivity, better thermal stability and overall higher surface area of the particles are possible factors which impart better performance to the co-filled composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Tariq Nazir, X. Jiang, S. Akram, Laboratory investigation on hydrophobicity of new silicon rubber insulator under different environmental conditions. Int. J. Electr. Comput. Sci. 12, 1–8 (2012)

    Google Scholar 

  2. X. Jiang, L. Chen, Z. Zhang, C. Sun, L. Shu, M.T. Nazir, Effect of arc-levitating from polluted insulators’ surface in the low air pressure on its DC flashover performance. IET Gener. Transm. Distrib. 5, 729–734 (2011)

    Article  Google Scholar 

  3. Y. Ohki, N. Hirai, Fault location in a cable for a nuclear power plant by frequency domain reflectometry. in International Conference on Condition Monitoring and Diagnosis (CMD), pp. 36–39 (2016)

  4. P. Preetha, M.J. Thomas, AC breakdown characteristics of epoxy nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 18, 1526–1534 (2015)

    Article  Google Scholar 

  5. M.G. Danikas, T. Tanaka, Nanocomposites—a review of electrical treeing and breakdown. IEEE Electr. Insul. Mag. 25, 19–25 (2009)

    Article  Google Scholar 

  6. R. Kochetov, T. Andritsch, P.H.F. Morshuis, J.J. Smit, Evaluation of the influence of various nanofillers on the AC breakdown strength of epoxy-based nanocomposites. in Proceedings of 2011 International Symposium on Electrical Insulating Materials (ISEIM), pp. 383–386 (2011)

  7. R. Saldivar-Guerrero, L. Rejon, Preparation and electrical characterization of EPDM nanocomposites by using silica nanoparticles. in International Symposium on Electrical Insulating Materials (ISEIM), pp. 499–501 (2008)

  8. M. Fairus, N.S. Mansor, M. Hafiz, M. Kamarol, M. Mariatt, Investigation on dielectric strength of alumina nanofiller with SiR/EPDM composites for HV insulator. in Interantional Conference on the Properties and Applications of Dielectric Materials (ICPADM), pp. 923–926 (2015)

  9. R. Raja Prabu, S. Usa, K. Udayakumar, M. Abdullah Khan, S.S.M. Abdul, Electrical insulation characteristics of silicone and EPDM polymeric blends. IEEE Trans. Dielectr. Electr. Insul. 14(5), 1207–1214 (2007)

    Article  Google Scholar 

  10. Li Z, Okamoto K, Ohki Y, Tanaka T (2009) Role of nano-filler on partial discharge resistance and dielectric breakdown strength of micro-Al2O3/epoxy composites. International Conference on the Properties and Applications of Dielectric Materials (ICPADM) 753–756

  11. M. Tariq Nazir, B.T. Phung, M. Hoffman, S. Yu, S. Li, Micro-AlN/nano-SiO2 co-filled silicone rubber composites with high thermal stability and excellent dielectric properties. Mater. Lett. 209, 421–424 (2017)

    Article  Google Scholar 

  12. J.W. Zha, Z.M. Dang, W.K. Li, Y.H. Zhu, G. Chen, Effect of micro-Si3N4-nano-Al2O3 co-filled particles on thermal conductivity, dielectric and mechanical properties of silicone rubber composites. IEEE Trans. Dielectr. Electr. Insul. 21, 1989–1996 (2014)

    Article  Google Scholar 

  13. M.T. Nazir, B.T. Phung, S. Li, Erosion resistance of micro-AlN and nano-SiO2 hybrid filled silicone rubber composites. in International Symposium on Electrical Insulating Materials (ISEIM), pp. 370–373 (2017)

  14. M. Tariq Nazir, B.T. Phung, S. Yu, S. Li, Effects of thermal properties on tracking and erosion resistance of micro-ATH/AlN/BN filled silicone rubber composites. IEEE Trans. Dielectr. Electr. Insul. 25(6), 2076–2085 (2018)

    Article  Google Scholar 

  15. I. Ramirez, E.A. Cherney, S. Jarayam, Comparison of the erosion resistance of silicone rubber and EPDM composites filled with micro silica and ATH. IEEE Trans. Dielectr. Electr. Insul. 19, 218–224 (2012)

    Article  Google Scholar 

  16. L. Meyer, S. Jayaram, E.A. Cherney, Thermal conductivity of filled silicone rubber and its relationship to erosion resistance in the inclined plane test. IEEE Trans. Dielectr. Electr. Insul. 11, 620–630 (2004)

    Article  Google Scholar 

  17. B.X. Du, H. Xu, Effects of thermal conductivity on dc resistance to erosion of silicone rubber/BN nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 21(2), 511–518 (2014)

    Article  Google Scholar 

  18. W. Fang, X. Zeng, X. Lai, H. Li, C. Xie, W. Chen, Y. Zhang, Investigation of the tracking and erosion resistance of cured liquid silicone rubber containing ureido-modified MQ silicone resin. IEEE Trans. Dielectr. Electr. Insul. 23, 3668–3675 (2016)

    Article  Google Scholar 

  19. M.T. Nazir, B.T. Phung, AC corona resistance of micro-ATH/nano-Al2O3 filled silicone rubber composites. in International Conference on high voltage engineering and application (ICHVE), pp. 1–4 (2016)

  20. M. Tariq Nazir, B.T. Phung, S. Yu, S. Li, Resistance against AC corona discharge of micro-ATH/nano-Al2O3 co-filled silicone rubber composites. IEEE Trans. Dielectr. Electr. Insul. 25(2), 657–667 (2018)

    Article  Google Scholar 

  21. http://dknano.com/Ecplb.asp?Fid=1177&ClassId=1195&NewsId=2934

  22. M. Tariq Nazir, B.T. Phung, S. Yu, Y. Zhang, S. Li, Tracking, erosion and thermal distribution of micro-AlN + nano-SiO2 co-filled silicone rubber for high voltage outdoor insulation. High Voltage 3(4), 289–294 (2018)

    Article  Google Scholar 

  23. Hamzah, M. Jaafar, M.K.M. Jamil, Electrical insulation characteristics of alumina, titania, and organoclay nanoparticles filled PP/EPDM nanocomposites. J. Appl. Polym. Sci (2014). https://doi.org/10.1002/app.41184

    Google Scholar 

  24. lEC 62539, First edition: 2007-07, Int’l Electrotechnical Commission (lEC), Geneva (2007)

  25. M. Tariq Nazir, B.T. Phung, S. Yu, S. Li, D. Xie, Y. Zhang, Thermal distribution analysis and suppression mechanism of carbonized tracking and erosion in silicone rubber/SiO2 nanocomposites. Polym. Testing 70, 226–233 (2018)

    Article  Google Scholar 

  26. M.T. Nazir, B.T. Phung, S. Yu, Y. Zhang, S. Li, Thermal analysis and tracking process in hybrid composites of silicone rubber. in International Conference on the Properties and Applications of Dielectric Materials (ICPADM), pp. 404–407 (2018)

  27. M.T. Nazir, B.T. Phung, S. Yu, S. Li, Comparative AC tracking and erosion resistance of micro-A1 N and BN filled silicone rubber composites. in International Conference on Electrical Materials and Power Equipment (ICEMPE), pp. 603–606 (2017)

  28. M. Tariq Nazir, B.T. Phung, M. Hoffman, Performance of silicone rubber composites with SiO2 micro/nano-filler under AC corona discharge. IEEE Trans. Dielectr. Electr. Insul. 23(5), 2804–2815 (2016)

    Article  Google Scholar 

  29. M. Tariq Nazir, B.T. Phung, AC corona resistance performance of silicone rubber composites with micro/nano silica fillers. International Conference on Dielectrics (ICD) 2, 681–684 (2016)

    Article  Google Scholar 

  30. M.T. Nazir, B.T. Phung, M. Hoffman, Effect of AC corona discharge on hydrophobic properties of silicone rubber nanocomposites. in International Conference on Properties and Applications of Dielectric Materials (ICPADM), pp. 412–415 (2015)

  31. T. Tanaka, M. Kozako, N. Fuse, Y. Ohki, Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Trans. Dielectr. Electr. Insul. 12, 669–681 (2005)

    Article  Google Scholar 

  32. C. Zhang, M. Ralf, G. Stevens, Preparation, characterization and dielectric properties of epoxy and polyethylene nanocomposites. IEEJ Trans. Funds. Mats. 126, 1105–1111 (2006)

    Article  Google Scholar 

  33. S. Li, G. Yin, S. Bai, J. Li, A new potential barrier model in epoxy resin nanodielectrics. IEEE Trans. Dielectr. Electr. Insul. 18, 1535–1543 (2011)

    Article  Google Scholar 

  34. W. Zhou, C. Wang, Q. An, H. Ou, Thermal properties of heat conductive silicone rubber filled with hybrid fillers. J. Comp. Mater. 42, 173–187 (2008)

    Article  Google Scholar 

  35. M. Xiao, B.X. Du, Review of high thermal conductivity polymer dielectrics for electrical insulation. High Voltage 1(1), 34–42 (2016)

    Article  Google Scholar 

  36. M. Tariq Nazir, B.T. Phung, Y. Zhang, S. Li, Dielectric and thermal properties of micro/nano boron nitride co-filled EPDM composites for high-voltage insulation. Micro & Nano Lett. 14(2), 150–153 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tariq Nazir.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazir, M., Phung, B.T., Li, S. et al. Effect of micro-nano additives on breakdown, surface tracking and mechanical performance of ethylene propylene diene monomer for high voltage insulation. J Mater Sci: Mater Electron 30, 14061–14071 (2019). https://doi.org/10.1007/s10854-019-01771-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01771-6

Navigation