Skip to main content
Log in

Polyethylenimine-mediated gold nanoparticle arrays with tunable electric field enhancement for plasmonic applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Localized surface plasmon resonance (LSPR) technologies are used in some of the most effective optical biosensors and can be used for the detection of biomolecules at ultralow concentrations. The construction of ordered nanoparticle arrays is important for LSPR and biosensing applications. The main challenge in the development of LSPR-based sensors is optical instability, which mainly originates from the detachment or aggregation of the gold nanoparticles (AuNPs) on the plasmonic surfaces. In this study, highly monodisperse and stable AuNPs with a particle size from 20.39 ± 1.2 to 106.17 ± 1.6 nm were synthesized by using the Turkevich and seed-and-growth methods. Here, we aimed to control the construction of plasmonic AuNPs by using the electrostatic assembly of oppositely charged polycationic polymer. For this purpose, we used positively charged polyethylenimine (PEI) to immobilize AuNPs on the disposable polystyrene surface and designed a model for plasmonic sensing. Our results confirmed that the 1-mg/mL PEI concentration efficiently prevented the aggregation or detachment of immobilized AuNPs. LSPR peak wavelengths were adjustable in the range from 530 ± 2.0 to 548 ± 1.5 nm. In addition, we theoretically showed that electric field enhancement within the gaps of nanoparticle arrays could enhance the sensitivity of the plasmonic surfaces. Such nanoplasmonic surfaces could be important in fabricating facile sensing devices and could be easily integrated into bioelectronics and microfluidic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Zhao, X. Zhang, C.R. Yonzon, A.J. Haes, R.P. Van Duyne, Nanomedicine 1, 2 (2006)

    Article  Google Scholar 

  2. A.G. Brolo, Nat. Photonics 6, 709 (2012)

    Article  Google Scholar 

  3. C.L. Wong, M. Olivo, Plasmonics 9, 809 (2014)

    Article  Google Scholar 

  4. V. Myroshnychenko, N. Nishio, F.J. García de Abajo, J. Förstner, N. Yamamoto, ACS Nano 12, 8436 (2018)

    Article  Google Scholar 

  5. S.S. Lamarre, H. Yockell-Lelièvre, A.M. Ritcey, J. Colloid Interface Sci. 443, 131 (2015)

    Article  Google Scholar 

  6. Z. Zhan, R. Xu, Y. Mi, H. Zhao, Y. Lei, ACS Nano 9, 4583 (2015)

    Article  Google Scholar 

  7. H.-Y. Chen, M.-H. Lin, C.-Y. Wang, Y.-M. Chang, S. Gwo, J. Am. Chem. Soc. 137, 13698 (2015)

    Article  Google Scholar 

  8. J. Fei, J. Li, Adv. Mater. 27, 314 (2015)

    Article  Google Scholar 

  9. N.M. Saleh, A.A. Aziz, J. Phys. Conf. Ser. 1083, 012041 (2018)

    Article  Google Scholar 

  10. K. Liu, X. Xue, E.P. Furlani, Sci. Rep. 6, 34189 (2016)

    Article  Google Scholar 

  11. A. Abdel-Mohsen, J. Jancar, D. Massoud, Z. Fohlerova, H. Elhadidy, Z. Spotz, A. Hebeish, Int. J. Pharm. 510, 86 (2016)

    Article  Google Scholar 

  12. D. Serantes, K. Simeonidis, M. Angelakeris, O. Chubykalo-Fesenko, M. Marciello, M.D.P. Morales, D. Baldomir, C. Martinez-Boubeta, J. Phys. Chem. C 118, 5927 (2014)

    Article  Google Scholar 

  13. D. Wang, A. Yang, A.J. Hryn, G.C. Schatz, T.W. Odom, ACS Photonics 2, 1789 (2015)

    Article  Google Scholar 

  14. A.E. Deatsch, B.A. Evans, J. Magn. Magn. Mater. 354, 163 (2014)

    Article  Google Scholar 

  15. S.S. Mali, C.S. Shim, H. Kim, P.S. Patil, C.K. Hong, Nanoscale 8, 2664 (2016)

    Article  Google Scholar 

  16. S.K. Ghosh, T. Pal, Chem. Rev. 107, 4797 (2007)

    Article  Google Scholar 

  17. J. Margueritat, H. Gehan, J. Grand, G. Levi, J. Aubard, N. Felidj, A. Bouhelier, G. Colas-Des-Francs, L. Markey, C. Marco De Lucas, ACS Nano 5, 1630 (2011)

    Article  Google Scholar 

  18. M.B. Ross, M.G. Blaber, G.C. Schatz, Nat. Commun. 5, 4090 (2014)

    Article  Google Scholar 

  19. N.J. Borys, E. Shafran, J.M. Lupton, Sci. Rep. 3, 2090 (2013)

    Article  Google Scholar 

  20. M. Meier, A. Wokaun, P.F. Liao, JOSA B 2, 931 (1985)

    Article  Google Scholar 

  21. B. Lamprecht, G. Schider, R. Lechner, H. Ditlbacher, J.R. Krenn, A. Leitner, F.R. Aussenegg, Phys. Rev. Lett. 84, 4721 (2000)

    Article  Google Scholar 

  22. J. Sung, E.M. Hicks, R.P. Van Duyne, K.G. Spears, J. Phys. Chem. C 112, 40914096 (2008)

    Google Scholar 

  23. S. Calamak, E.A. Aksoy, C. Erdogdu, M. Sagıroglu, K. Ulubayram, J. Nanoparticle Res. 17, 87 (2015)

    Article  Google Scholar 

  24. P.M. Mendes, S. Jacke, K. Critchley, J. Plaza, Y. Chen, K. Nikitin, R.E. Palmer, J.A. Preece, S.D. Evans, D. Fitzmaurice, Langmuir 20, 3766 (2004)

    Article  Google Scholar 

  25. X. Dai, R.G. Compton, Anal. Sci. 22, 567 (2006)

    Article  Google Scholar 

  26. S.-H. Chen, Y.-C. Chuang, Y.-C. Lu, H.-C. Lin, Y.-L. Yang, C.-S. Lin, Nanotechnology 20, 215501 (2009)

    Article  Google Scholar 

  27. I. Hussain, H. Zhang, M. Brust, J. Barauskas, A.I. Cooper, J. Colloid Interface Sci. 350, 368 (2010)

    Article  Google Scholar 

  28. C. Durand-Gasselin, N. Sanson, N. Lequeux, Langmuir 27, 12329 (2011)

    Article  Google Scholar 

  29. L. Chen, H.-A. Klok, Soft Matter 9, 10678 (2013)

    Article  Google Scholar 

  30. F. Inci, O. Tokel, S. Wang, U.A. Gurkan, S. Tasoglu, D.R. Kuritzkes, U. Demirci, ACS Nano 7, 4733 (2013)

    Article  Google Scholar 

  31. K.R. Bahadur, S. Aryal, S.R. Bhattarai, N. Bhattarai, C.H. Kim, H.Y. Kim, J. Biomater. Sci. Polym. Ed. 17, 579 (2006)

    Article  Google Scholar 

  32. R. Shahbazi, E. Asik, N. Kahraman, M. Turk, B. Ozpolat, K. Ulubayram, Nanomedicine 12, 1961 (2017)

    Article  Google Scholar 

  33. R. Shahbazi, I. Ozcicek, G. Ozturk, K. Ulubayram, Nanotechnology 28, 025103 (2016)

    Article  Google Scholar 

  34. M.-L. Wang, T.-T. Jiang, Y. Lu, H.-J. Liu, Y. Chen, J. Mater. Chem. A 1, 5923 (2013)

    Article  Google Scholar 

  35. S.M. Budy, D.J. Hamilton, Y. Cai, M.K. Knowles, S.M. Reed, J. Colloid Interface Sci. 487, 336 (2017)

    Article  Google Scholar 

  36. F. Papadopulos, M. Spinelli, S. Valente, L. Foroni, C. Orrico, F. Alviano, G. Pasquinelli, Ulrastruct. Pathol. 31, 401 (2007)

    Article  Google Scholar 

  37. Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, Nat. Commun. 4, 2381 (2013)

    Article  Google Scholar 

  38. K. Kluczyk, W. Jacak, J. Quant. Spectrosc. Radiat. Transf. 168, 78 (2016)

    Article  Google Scholar 

  39. R.F. Oulton, Mater. Today 15, 26 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kezban Ulubayram.

Ethics declarations

Conflict of interest

There are no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calamak, S., Ulubayram, K. Polyethylenimine-mediated gold nanoparticle arrays with tunable electric field enhancement for plasmonic applications. J Mater Sci: Mater Electron 30, 10013–10023 (2019). https://doi.org/10.1007/s10854-019-01344-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01344-7

Navigation