Skip to main content
Log in

Ultraviolet detection properties of electrodeposited n-SnO2 modified p-Si nanowires hetero-junction photodiode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Highly dense, vertically aligned silicon nanowires (SiNWs), having diameters in the range of 40–100 nm and length upto 5 µm, are grown by metal assisted chemical etching technique on p-type polycrystalline silicon (pc-Si) substrate. The hetero-junction photodiodes, for ultraviolet sensing application, are fabricated by depositing tin oxide (n-SnO2) onto pc-Si and SiNWs on pc-Si surface, using simple and low cost electrochemical deposition technique. The prepared SiNWs and n-SnO2 decorated SiNWs are examined by scanning electron microscopy and elemental dispersive analysis by X-ray. Three photodiodes with device architectures Al/Ti/SiNWs/pc-Si/Ti/Al, Al/Ti/n-SnO2/pc-Si/Ti/Al and Al/Ti/n-SnO2/SiNWs/pc-Si/Ti/Al are fabricated and their UV sensing behavior is studied by recording their V–I characteristics under dark and UV-radiation. The recorded V–I curves of the fabricated devices show diode like behavior and their rectification ratio, turn on voltage, effective barrier height and sensitivity are calculated and compared. Under UV exposure, the V–I studies under forward and reverse biasing for the device Al/Ti/n-SnO2/SiNWs/pc-Si/Ti/Al shows significantly higher rectification ratio, sensitivity, responsivity and detectivity around 172.3 at ± 9 V, 64, 0.3456 A/W at 5 V and 8.02869 × 1012 Jones respectively. Further, the photo-resistive measurements of the device also show its excellent reproducible nature. This better UV sensing behavior is also supported with proposed UV sensing mechanism under biasing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H. Cui, S. Li, S. Deng, H. Chen, C. Wang, ACS Sens. 2, 386 (2017)

    Article  Google Scholar 

  2. H. Jian, M. Dayan, X. Kewei, Rare Met. Mater. Eng. 44, 2692 (2015)

    Article  Google Scholar 

  3. A. Cao, J.R. Sudhölter, L.C.P. M. de Smet. Sensors 14, 245 (2014)

    Article  Google Scholar 

  4. F. Patolsky, G. Zheng, C.M. Lieber, Nanomedicine 1, 51 (2006)

    Article  Google Scholar 

  5. Y. Paska, T. Stelzner, O. Assad, U. Tisch, S. Christiansen, H. Haick, ACS Nano 6, 335 (2012)

    Article  Google Scholar 

  6. Y. Bi, X.S. Hu, M. Niemier, J.S. Yuan, Y. Jin, in 2014 IEEE 23rd Asian Test Symposium vol. 14, p. 342 (2014)

  7. Council on Scientific Affairs. JAMA 262, 380 (1989)

    Article  Google Scholar 

  8. A. Sciuto, M.C. Mazzillo, S.D. Franco, IEEE Photonics J. 9, 6801110 (2017)

    Article  Google Scholar 

  9. M. Caria, L. Barberini, A. Rusani, A. Sesseligo, Appl. Phys. Lett. 81, 1506 (2002)

    Article  Google Scholar 

  10. C. Pernot, A. Hirano, M. Iwaya, H. Amano, T. Detchprohm, I. Akasaki, Jpn. J. Appl. Phys. 39, 387 (2000)

    Article  Google Scholar 

  11. X. Dai, S. Zhang, Z. Wang, G. Adamo, H. Liu, Y. Huang, C. Couteau, C. Soci, Nano Lett. 14, 2688 (2014)

    Article  Google Scholar 

  12. A. Aldalbahi, E. Li, M. Rivera, R. Velazquez, T. Altalhi, X. Peng, P.X. Feng, Sci. Rep. 6, 23457 (2016)

    Article  Google Scholar 

  13. A.R. Schaefer, Appl. Opt. 16, 1539 (1977)

    Article  Google Scholar 

  14. T.E. Hansen, Phys. Scr. 18, 471 (1978)

    Article  Google Scholar 

  15. R. Korde, J. Geist, Solid State Electron. 30, 89 (1987)

    Article  Google Scholar 

  16. R.S. Popovic, K. Solt, U. Falk, Z. Stoessel, Sens. Actuators A 22, 553 (1990)

    Article  Google Scholar 

  17. O.M. Nayfeh, S. Rao, A. Smith, J. Therrien, M.H. Nayfeh, IEEE Photon. Technol. Lett. 16, 1927 (2004)

    Article  Google Scholar 

  18. P. Namdari, H. Daraee, A. Eatemadi, Nanoscale Res. Lett. 11, 406 (2016)

    Article  Google Scholar 

  19. K.Q. Peng, S.T. Lee, Adv. Mater. 23, 198 (2011)

    Article  Google Scholar 

  20. K. Rasool, M.A. Rafiq, M. Ahmad, Z. Imran, M.M. Hasan, Appl. Phys. Lett. 101, 253104 (2012)

    Article  Google Scholar 

  21. Y. Qi, Z. Wang, M. Zhang, X. Wang, A. Ji, F. Yang, AIP Adv. 4, 031307 (2014)

    Article  Google Scholar 

  22. T.W. Ho, F.C.N. Hong, J. Nanomater. 2012, 274618 (2012)

    Article  Google Scholar 

  23. F. Demami, L. Pichon, R. Rogel, A.C. Salaün, IOP Conf. Ser. Mater. Sci. Eng. 6, 012014 (2009)

    Article  Google Scholar 

  24. N. Fukata, T. Oshima, T. Tsurui, S. Ito, K. Murakami, Sci. Technol. Adv. Mater. 6, 628 (2005)

    Article  Google Scholar 

  25. M.K. Hossain, B. Salhi, A.W. Mukhaimer, F.A. Al-Sulaiman, Appl. Nanosci. 6, 1031 (2016)

    Article  Google Scholar 

  26. T. Zhai, X. Fang, M. Liao, X. Xu, H. Zeng, B. Yoshio, D. Golberg, Sensors 9, 6504 (2009)

    Article  Google Scholar 

  27. D. Kim, G. Shin, J. Yoon, D. Jang, S.J. Lee, G. Zi, J.S. Ha, Nanotechnology 24, 315502 (2013)

    Article  Google Scholar 

  28. Z. Yuan, D. Li, M. Wang, P. Chen, D. Gong, P. Cheng, D. Yang, Appl. Phys. Lett. 92, 121908 (2008)

    Article  Google Scholar 

  29. K.W. Min, Y.K. Kim, G. Shin, S. Jang, M. Han, J. Huh, G.T. Kim, J.S. Ha, Adv. Funct. Mater. 21, 119 (2011)

    Article  Google Scholar 

  30. X. Chen, J. Liang, Z. Zhou, B. Li, Mater. Res. Bull. 45, 2006 (2010)

    Article  Google Scholar 

  31. G. Rawat, D. Somvanshi, Y. Kumar, H. Kumar, C. Kumar, S. Jit, IEEE Trans. Nanotechnol. 16, 49 (2017)

    Article  Google Scholar 

  32. K.A. Gonchar, L.A. Osminkina, R.A. Galkin, M.B. Gongalsky, V.S. Marshov, V.Y. Timoshenko, M.N. Kulmas, V.V. Solovyev, A.A. Kudryavtsev, V.A. Sivakov, J. Nanoelectron. Optoelectron. 7, 602 (2012)

    Article  Google Scholar 

  33. A.S. Togonal, L. He, P.R. Cabarrocas, Rusli, Langmuir 30, 10290 (2014)

    Article  Google Scholar 

  34. Z. Guo, J.Y. Jung, K. Zhou, Y. Xiao, S.W. Jee, S.A. Moiz, J.H. Lee, in Proceedings of SPIE, vol. 7772, p. 77721C (2010)

  35. J. Barbe, M.L. Tietze, M. Neophytou, B. Murali, E. Alarousu, A.E. Labban, M. Abulikemu, W. Yue, O.F. Mohammed, I. McCulloch, A. Amassian, S. Gobbo, ACS Appl. Mater. Interfaces 9, 11828 (2017)

    Article  Google Scholar 

  36. X. Wan, Y. Xu, H. Guo, K. Shehzad, A. Ali, Y. Liu, J. Yang, D. Dai, C.T. Lin, L. Liu, H.C. Cheng, F. Wang, X. Wang, H. Lu, W. Hu, X. Pi, Y. Dan, J. Luo, T. Hasan, X. Duan, X. Li, J. Xu, D. Yang, T. Ren, B. Yu, NPJ 2D Mater. Appl. 1, 4 (2017)

    Article  Google Scholar 

  37. L. Shi, S. Nihtianov, IEEE Sens. J. 12, 2453 (2012)

    Article  Google Scholar 

  38. Y.H. Chen, S.A. Lyon, IEEE J. Quantum Electron. 25, 1053 (1989)

    Article  Google Scholar 

  39. M. Abbas, S.Z. Hassan, M.H. Naser, M. Ahmed, Appl. Surf. Sci. 305, 445 (2014)

    Article  Google Scholar 

  40. Z. Guo, D. Zhao, Y. Liu, D. Shen, J. Zhang, B. Li, Appl. Phys. Lett. 93, 163501 (2008)

    Article  Google Scholar 

  41. Z.S. Hosseini, M. Shasti, S. Ramezani Sani, A. Mortezaali, J. Appl. Phys. 119, 014503 (2016)

    Article  Google Scholar 

  42. P. Chinnamuthu, J.C. Dhar, A. Mondal, A. Bhattacharyya, N.K. Singh, J. Phys. D 45, 135102 (2012)

    Article  Google Scholar 

  43. H. Zhou, J. Mei, H. Wang, G.J. Fang, Mater. Sci. Semicond. Process. 38, 67 (2015)

    Article  Google Scholar 

  44. R. Dalvand, S. Mahmud, R. Shabannia, J. Mater. Sci.: Mater. Electron. 29, 4999 (2018)

    Google Scholar 

  45. S.R. Sani, Chin. Phys. B 23, 107302 (2014)

    Article  Google Scholar 

  46. S.N. Mazhir, G.H. Mohamed, A.A. Abdullah, M.D. Radhi, Int. J. Adv. Res. 3, 1060 (2015)

    Google Scholar 

  47. G. Rawat, D. Somvanshi, H. Kumar, Y. Kumar, C. Kumar, S. Jit, IEEE Trans. Nanotechnol. 15, 193–200 (2016)

    Article  Google Scholar 

  48. H. Zhou, G. Fang, L. Yuan, C. Wang, X. Yang, Appl. Phys. Lett. 94, 013503 (2009)

    Article  Google Scholar 

  49. J.H. Choi, S.N. Das, J.P. Kar, Solid State Electron. 54, 1582 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. Ashok K. Chauhan, Founder President, Amity University, Noida for his continuous encouragement. The authors would also like to thank Dr. D. N. Singh from IndoSolar Pvt. Ltd., India for providing the silicon wafers to carry out the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuvaraja, S., Kumar, V., Dhasmana, H. et al. Ultraviolet detection properties of electrodeposited n-SnO2 modified p-Si nanowires hetero-junction photodiode. J Mater Sci: Mater Electron 30, 7618–7628 (2019). https://doi.org/10.1007/s10854-019-01077-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01077-7

Navigation