Skip to main content
Log in

Synergistic influence of micropore architecture and TiO2 coating on the microwave absorption properties of Co nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Microporous Co@TiO2 nanoparticles (NPs) have been synthesized by combining chemical de-alloying and sol–gel strategies. The NPs with a mean size of 30 nm display a TiO2 shell of 5 nm in thickness and possess micropores in a range from 0.4 to 0.8 nm. The saturation magnetization (MS) and coercivity (HC) of the NPs are 18.6 emu/g and 337.4 Oe, respectively. The microwave absorption properties of the microporous Co@TiO2 NPs mixed with paraffin were investigated in the range of 2–18 GHz. Due to the relatively high dielectric loss tangent value and low magnetic loss tangent value, the impedance matching of the composite is better than the nonporous counterpart. The composite shows a minimum reflection loss (RL) of − 16.6 dB at a thickness of merely 2.2 mm, and the absorption bandwidth for RL ≤ − 10 dB is as large as 5.0 GHz. At a thickness of 1.9 mm, the maximum absorption bandwidth for RL ≤ − 10 dB of 6.8 GHz can be obtained, which is much larger than that of its nonporous counterpart. Furthermore, the microwave absorption mechanism is discussed on the basis of the synergistic influence of micropores and TiO2 shell. This study provides a good reference for designing novel materials for electromagnetic interference applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D.D.L. Chung, Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39, 279–285 (2001)

    Article  Google Scholar 

  2. S. Ghosh, S. Ganguly, S. Remanan, S. Mondal, S. Jana, P.K. Maji, N. Singha, N.C. Das, Ultra-light weight, water durable and flexible highly electrical conductive polyurethane foam for superior electromagnetic interference shielding materials. J. Mater. Sci. Mater. Electron. 29, 10177–10189 (2018)

    Article  Google Scholar 

  3. B. Wen, M. Cao, M. Lu, W. Cao, H. Shi, J. Liu, X. Wang, H. Jin, X. Fang, W. Wang, Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26, 3484–3489 (2014)

    Article  Google Scholar 

  4. Z. Peng, W. Jiang, Y. Wang, S. Zhong, Synthesis and microwave absorption properties of Fe3O4@BaTiO3/reduced graphene oxide nanocomposites. J. Mater. Sci. Mater. Electron. 27, 1304 (2016)

    Article  Google Scholar 

  5. T. Liu, Y. Pang, X. Xie, W. Qi, Y. Wu, S. Kobayashi, J. Zheng, X. Li, Synthesis of microporous Ni/NiO nanoparticles with enhanced microwave absorption properties. J. Alloys Compd. 667, 287–296 (2016)

    Article  Google Scholar 

  6. Y. Qing, W. Zhou, F. Luo, D. Zhu, Epoxy-silicone filled with ulti-walled carbon nanotubes and carbonyl iron particles as a microwave absorber. Carbon 48, 4074–4080 (2010)

    Article  Google Scholar 

  7. X. Tang, B.Y. Zhao, Q. Tian, K.A. Hu, Synthesis, characterization and microwave absorption properties of titania-coated barium ferrite composites. J. Phys. Chem. Solids 67, 2442–2447 (2006)

    Article  Google Scholar 

  8. Z. Ma, Q. Liu, J. Yuan, Z. Wang, C. Cao, J. Wang, Analyses on multiple resonance behaviors and microwave reflection loss in magnetic Co microflowers. Phys. Status Solidi 249, 575–580 (2012)

    Article  Google Scholar 

  9. G. Tong, J. Yuan, W. Wu, Q. Hu, H. Qian, L. Li, J. Shen, Flower-like Co superstructures: morphology and phase evolution mechanism and novel microwave electromagnetic characteristics. Crystengcomm 14, 2071–2079 (2012)

    Article  Google Scholar 

  10. J. Kong, F. Wang, X. Wan, J. Liu, M. Itoh, K.I. Machida, Template-free synthesis of Co nanoporous structures and their electromagnetic wave absorption properties. Mater. Lett. 78, 69–71 (2012)

    Article  Google Scholar 

  11. J. Li, J. Huang, Y. Qin, F. Ma, Magnetic and microwave properties of cobalt nanoplatelets. Mater. Sci. Eng. B 138, 199–204 (2007)

    Article  Google Scholar 

  12. C. He, S. Qiu, X. Wang, J. Liu, L. Luan, W. Liu, M. Itoh, K. Machida, Facile synthesis of hollow porous cobalt spheres and their enhanced electromagnetic properties. J. Mater. Chem. 22, 22160–22166 (2012)

    Article  Google Scholar 

  13. Y. Lü, Y. Wang, H. Li, Y. Lin, Z.Y. Jiang, Z. Xie, Q. Kuang, L.S. Zheng, MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 7, 13604 (2015)

    Article  Google Scholar 

  14. H. Lv, X. Liang, G. Ji, H. Zhang, Y. Du, Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties. ACS Appl. Mater. Interfaces 7, 9776 (2015)

    Article  Google Scholar 

  15. A.C. Johnstonpeck, J. Wang, J.B. Tracy, Synthesis and structural and magnetic characterization of Ni(core)/NiO(shell) nanoparticles. ACS Nano 3, 1077–1084 (2009)

    Article  Google Scholar 

  16. T. Liu, Y. Pang, H. Kikuchi, Y. Kamada, S. Takahashi, Superparamagnetic property and high microwave absorption performance of FeAl@(Al, Fe)2O3 nanoparticles induced by surface oxidation. J. Mater. Chem. C 3, 6232–6239 (2015)

    Article  Google Scholar 

  17. F. Ren, G. Zhu, P. Ren, K. Wang, X. Cui, X. Yan, Cyanate ester resin filled with graphene nanosheets and CoFe2O4-reduced graphene oxide nanohybrids as a microwave absorber. Appl. Surf. Sci. 351, 40–47 (2015)

    Article  Google Scholar 

  18. M. Yu, C. Liang, M. Liu, X. Liu, K. Yuan, H. Cao, R. Che, Yolk-shell Fe3O4@ZrO2 prepared by a tunable polymer surfactant assisted sol-gel method for high temperature stable microwave absorption. J. Mater. Chem. C 2, 7275–7283 (2014)

    Article  Google Scholar 

  19. B. Yang, Z. Wu, Z. Zou, R. Yu, High-performance Fe/SiO2 soft magnetic composites for low-loss and high-power applications. J. Phys. D Appl. Phys. 43, 365003–365008 (2010)

    Article  Google Scholar 

  20. X.L. Dong, X.F. Zhang, H. Huang, F. Zuo, Enhanced Microwave Absorption in Ni/Polyaniline Nanocomposites by Dual Dielectric Relaxations. Appl. Phys. Lett. 92, 301 (2008)

    Google Scholar 

  21. B. Zhao, G. Shao, B. Fan, W. Zhao, R. Zhang, Investigation of the electromagnetic absorption properties of Ni@TiO2 and Ni@SiO2 composite microspheres with core-shell structure. Phys. Chem. Chem. Phys. 17, 2531 (2015)

    Article  Google Scholar 

  22. Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan, W. She, Y. Yang, R. Che, CoNi@SiO2 @TiO2 and CoNi@Air@TiO2 Microspheres with Strong Wideband Microwave Absorption. Adv. Mater. 28, 486 (2016)

    Article  Google Scholar 

  23. A. Kumar, V. Agarwala, D. Singh, Microwave absorbing behavior of metal dispersed TiO2, nanocomposites. Adv. Power Technol. 25, 483–489 (2014)

    Article  Google Scholar 

  24. M.J. Molaei, M.R. Rahimipour, Microwave reflection loss of magnetic/dielectric nanocomposites of BaFe12O19/TiO2. Mater. Chem. Phys. 167, 145–151 (2015)

    Article  Google Scholar 

  25. Z. Yang, F. Luo, Y. Hu, S. Duan, D. Zhu, W. Zhou, Dielectric and microwave absorption properties of TiO2/Al2O3, coatings and improved microwave absorption by FSS incorporation. J. Alloys Compd. 678, 527–532 (2016)

    Article  Google Scholar 

  26. X. Zhang, G. Ji, W. Liu, X. Zhang, Q. Gao, Y. Li, Y. Du, A Novel Co/TiO2 nanocomposite derived from metal-organic framework: synthesis and efficient microwave absorption. J. Mater. Chem. C 4, 1860–1870 (2016)

    Article  Google Scholar 

  27. J. Liu, R. Che, H. Chen, F. Zhang, F. Xia, Q. Wu, M. Wang, Microwave absorption enhancement of multifunctional composite microspheres with Spinel Fe3O4 cores and anatase TiO2 shells. Small 8, 1214–1221 (2012)

    Article  Google Scholar 

  28. Y. Huang, Y. Wang, Z. Li, Z. Yang, C. Shen, C. He, Effect of pore morphology on the dielectric properties of porous carbons for microwave absorption applications. J. Phys. Chem. C 118, 26027–26032 (2014)

    Article  Google Scholar 

  29. D. Sun, Q. Zou, Y. Wang, Y. Wang, W. Jiang, F. Li, Controllable synthesis of porous Fe3O4@ZnO sphere decorated graphene for extraordinary electromagnetic wave absorption. Nanoscale 6, 6557–6562 (2014)

    Article  Google Scholar 

  30. X.B. Xie, M. Chen, M.M. Hu, T. Liu, Recoverable Ni2Al3 nanoparticles and their catalytic effects on Mg-based nanocomposite during hydrogen absorption and desorption cycling. Int. J. Hydrogen Energy 43, 21856–21863 (2018)

    Article  Google Scholar 

  31. M. Oezaslan, F. Hasché, P. Strasser, In situ observation of bimetallic alloy nanoparticle formation and growth using high-temperature XRD. Chem. Mater. 23, 2159–2165 (2011)

    Article  Google Scholar 

  32. M. Oezaslan, M. Heggen, P. Strasser, Size-dependent morphology of de-alloyed bimetallic catalysts: linking the nano to the macro scale. J. Am. Chem. Soc. 134, 514–524 (2012)

    Article  Google Scholar 

  33. T. Liu, T. Zhang, M. Zhu, C. Qin, Synthesis and structures of Al–Ti nanoparticles by hydrogen plasma-metal reaction. J. Nanopart. Res. 14, 1–8 (2012)

    Google Scholar 

  34. T. Liu, Y. Pang, M. Zhu, S. Kobayashi, Microporous Co@CoO nanoparticles with superior microwave absorption properties. Nanoscale 6, 2447 (2014)

    Article  Google Scholar 

  35. R. Zha, R. Nadimicherla, X. Guo, Cadmium removal in waste water by nanostructured TiO2 particles. J. Mater. Chem. A 2, 13932–13941 (2014)

    Article  Google Scholar 

  36. C. Chen, Q. Liu, H. Bi, W.B. You, W. She, R. Che, Fabrication of hierarchical TiO2 coating Co20Ni80 particle with tunable core size as high-performance wide-band microwave absorber. Phys. Chem. Chem. Phys. 18, 26712–26718 (2016)

    Article  Google Scholar 

  37. R.P. Buck, E. Lindner, IUPAC recommendations for nomenclature of ion-selective electrodes. Pure Appl. Chem. 66, 2527–2536 (1994)

    Article  Google Scholar 

  38. T. Xia, C. Zhang, N.A. Oyler, X. Chen, Hydrogenated TiO2 nanocrystals: a novel microwave absorbing material. Adv. Mater. 25, 6905–6910 (2013)

    Article  Google Scholar 

  39. R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16, 401–405 (2004)

    Article  Google Scholar 

  40. J. Xiang, Y. Chu, X. Zhang, X. Shen, Magnetic and microwave absorption properties of electrospun Co0.5Ni0.5Fe2O4 nanofibers. Appl. Surf. Sci. 263, 3320–3325 (2012)

    Article  Google Scholar 

  41. X.L. Shi, M.S. Cao, J. Yuan, X.Y. Fang, Dual nonlinear dielectric resonance and nesting microwave absorption peaks of hollow cobalt nanochains composites with negative permeability. Appl. Phys. Lett. 95, 477 (2009)

    Google Scholar 

  42. G. Zheng, X. Yin, S. Liu, X. Liu, J. Deng, Q. Li, composite ceramics with multi-shell microstructure. J. Eur. Ceram. Soc. 33, 2173–2180 (2013)

    Article  Google Scholar 

  43. Y.J. Chen, P. Gao, C.L. Zhu, R.X. Wang, Synthesis, magnetic and electromagnetic wave absorption properties of porous Fe3O4/Fe/SiO2, core/shell nanorods. J. Appl. Phys. 106, 054303–054304 (2009)

    Article  Google Scholar 

  44. Y. Du, W. Liu, Q. Rong, W. Ying, X. Han, J. Ma, X. Ping, Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites. ACS Appl. Mater. Interfaces 6, 12997 (2014)

    Article  Google Scholar 

  45. S. He, G.S. Wang, C. Lu, J. Liu, B. Wen, H. Liu, L. Guo, M.S. Cao, Enhanced wave absorption of nanocomposites based on the synthesized complex symmetrical CuS nanostructure and poly(vinylidene fluoride). J. Mater. Chem. A 1, 4685–4692 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of this work by the Joint Fund of the National Natural Science Foundation of China and Baosteel Group Corporation (No. U1560106), the Aeronautical Science Foundation of China (No. 2016ZF51050) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars (State Education Ministry).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 314 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, H., Pang, Y., Li, D. et al. Synergistic influence of micropore architecture and TiO2 coating on the microwave absorption properties of Co nanoparticles. J Mater Sci: Mater Electron 30, 5620–5630 (2019). https://doi.org/10.1007/s10854-019-00855-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00855-7

Navigation