Skip to main content
Log in

Structural and magnetic properties of Bi3+ ion doped Ni–Cu–Co nano ferrites prepared by sol–gel auto combustion method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bismuth doped Ni–Cu–Co nano ferrites with the chemical composition Ni0.2Cu0.2Co0.6Fe2−xBixO4 (x = 0.0, 0.025, 0.05, 0.075, 0.1) were prepared by sol–gel auto-combustion technology. The analysis of the X-ray diffraction (XRD) patterns confirms that all the samples have a cubic spinel structure. The particle sizes of the prepared samples (between 51 and 55 nm) are determined by the Scherrer equation. The obtained Fourier transform infrared measurement also confirms the formation of the spinel structure. It was observed that with the increase of Bi3+ ion concentration, the protruding absorption band was slightly shifted to the high frequency side. Transmission electron microscopy images show the presence of particles which are spherically cubic shaped crystallites. It has been proved that the synthesized ferrite has pure phase and structure by Energy dispersive X-ray, and Bi3+-doping was successfully achieved. Cation redistribution in spinel ferrite nanoparticles are confirmed by X-ray photoelectron spectroscopy (XPS). The magnetic parameters of the samples are measured by Vibration sample magnetometer (VSM) at room temperature with a maximum magnetic field of 1 T. It can be clearly observed that the magnetic properties such as saturation magnetization (Ms), remanent magnetization (Mr) and coercivity (Hc) decrease significantly with the bismuth ion concentration increases. This is because Bi3+ ions replace Fe3+ ions, and Bi3+–Fe3+ ion interactions are more predominates than Fe2+–Fe3+ ion interactions. This also indicates that the bismuth doped nickel copper cobalt ferrite has low magnetic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. V. Pallai, D.O. Shah, Synthesis of high coercivity cobalt ferrite particles using water-in-oil microemulsions. J. Magn. Magn. Mater. 163, 243–248 (1996)

    Article  Google Scholar 

  2. S. Kumar, T.J. Shinde, P.N. Vasambekar, Microwave synthesis and characterization of nano crystalline Mn-Zn Ferrites. Adv. Mater. Lett. 4, 373–377 (2013)

    Article  Google Scholar 

  3. G. Dixit, J.P. Singh, R.C. Srivastava, H.M. Agrawal, R.J. Chaudhary, Structural, magnetic and optical studies of nickel ferrite thin films. Adv. Mater. Lett. 3, 21–28 (2012)

    Article  Google Scholar 

  4. T. Giannakopoulou, L. Kompotiatis, A. Kontogeorgakos, G. Kordas, Microwave behavior of ferrites prepared via sol-gel method. J. Magn. Magn. Mater. 246, 360–365 (2002)

    Article  Google Scholar 

  5. G.A. Sawatzky, F.V.D. Woude, A.H. Morrish, Cation distributions in octahedral and tetrahedral sites of the ferrimagnetic spinel CoFe2O4.. J. Appl. Phys. 39, 1204–1205 (1968)

    Article  Google Scholar 

  6. S.M. Asgarian, S. Pourmasoud, Z. Kargar, A. Sobhani-Nasab, M. Eghbali-Arani, Investigation of positron annihilation lifetime and magnetic properties of Co1 – xCuxFe2O4 nanoparticles. Mater. Res. Express. 6, 15023 (2019)

    Article  Google Scholar 

  7. L.D. Tung, V.L. Kolesnichenko, D. Caruntu, N.H. Chou, C.J. O’Connor, C.J.L. Spinu, Magnetic properties of ultrafine cobalt ferrite particles. J. Appl. Phys. 93, 7486–7488 (2003)

    Article  Google Scholar 

  8. A. Sobhani-Nasab, A. Ziarati, M. Rahimi-Nasrabadi, M.R. Ganjali, A. Badiei, Five-component domino synthesis of tetrahydropyridines using hexagonal PbCrxFe12–xO19 as efficient magnetic nanocatalyst. Res. Chem. Intermediat. 43, 6155–6165 (2017)

    Article  Google Scholar 

  9. A. Ziarati, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, M.R. Ganjali, A. Badiei, Sonication method synergism with rare earth based nanocatalyst: preparation of NiFe2 – xEuxO4 nanostructures and its catalytic applications for the synthesis of benzimidazoles, benzoxazoles, and benzothiazoles under ultrasonic irradiation. J. Rare Earths 35, 374–381 (2017)

    Article  Google Scholar 

  10. J. Amighian, M. Mozaffari, B. Nasr, Preparation of nano-sized manganese ferrite (MnFe2O4) via co-precipitation method. Phys. Status Solidi C 3, 3188–3192 (2011)

    Article  Google Scholar 

  11. S. Uday Bhasker et al., Preparation and characterization of cobalt magnesium nano ferrites using auto-combustion method. Adv. Mater. Res. 584, 280–284 (2012)

    Article  Google Scholar 

  12. N. Ranvah, Y. Melikhov, I.C. Nlebedim, D.C. Jiles, J.E. Snyder, A.J. Moses, P.I. Williams, Temperature dependence of magnetic anisotropy of germanium/cobalt cosubstituted cobalt ferrite. J. Appl. Phys. 105, 5181–5183 (2009)

    Article  Google Scholar 

  13. J.A. Paulsen, C.C.H. Lo, J.E. Snyder, A.P. Ring, L.L. Jones, D.C. Jiles, Study of the curie temperature of cobalt ferrite based composites for stress sensor applications. IEEE. Trans. Magn. 39, 3316–3318 (2003)

    Article  Google Scholar 

  14. M. Srivastava, A.K. Ojha, S. Chaubey, P.K. Sharma, A.C. Pandey, Influence of pH on structural morphology and magnetic properties of ordered phase cobalt doped lithium ferrites nanoparticles synthesized by sol–gel method. Sci. Eng. B. 175, 14–21 (2010)

    Article  Google Scholar 

  15. A.T. Raghavendar, D. Pajic, K. Zadro, T. Milekovic, P.V. Rao, K.M. Jadhav, D. Ravinder, Synthesis and magnetic properties of NiFe2–xAlxO4 nanoparticles. J. Magn. Magn. Mater. 316, 1–7 (2007)

    Article  Google Scholar 

  16. J. Jing, L. Liangchao, X. Feng, Structural analysis and magnetic properties of Gd-doped Li–Ni ferrites prepared using rheological phase reaction. J. Rare Earths 25, 79–83 (2007)

    Article  Google Scholar 

  17. G. Chandrasekaran, S. Selvandan, K. Manivannane, Electrical and FTIR studies on Al substituted Mn–Zn mixed ferrites. J. Mater. Sci. Mater. Electron. 15, 15–18 (2004)

    Article  Google Scholar 

  18. S. Anjum, A. Rashid, F. Bashir, S. Riaz, M. Pervaiz, R. Zia, Effect of Cu-doped nickel ferrites on structural, magnetic, and dielectric properties. Mater. Today Proc. 2, 5559–5567 (2015)

    Article  Google Scholar 

  19. M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, ZnFe2–xLaxO4 nanostructure: synthesis, characterization, and its magnetic properties. J. Mater. Sci. Mater. Electron. 26, 9776–9781 (2015)

    Article  Google Scholar 

  20. K. Siraj, M. Khaleeq-ur-Rahman, S.I. Hussain, M.S. Rafique, S. Anjum, Effect of deposition temperature on structural, surface, optical and magnetic properties of pulsed laser deposited Al-doped CdO thin films. J. Alloys Compd. 509, 6756–6762 (2011)

    Article  Google Scholar 

  21. R. Arulmurugan, B. Jeyadevan, G. Vaidyanathan, S. Sendhilnathan, Effect of zinc substitution on Co–Zn and Mn–Zn ferrite nanoparticles prepared by coprecipitation. J. Magn. Magn. Mater. 288, 470–477 (2005)

    Article  Google Scholar 

  22. K. Praveena, B. Radhika, S. Srinath, Dielectric and magnetic properties of NiFe2–xBixO4 nanoparticles at microwave frequencies prepared via co-precipitation method. Procedia Eng. 76, 1–7 (2014)

    Article  Google Scholar 

  23. I.P. Muthuselvam, R.N. Bhowmik, Mechanical alloyed Ho3+ doping in CoFe2O4 spinel ferrite and understanding of magnetic nanodomains. J. Magn. Magn. Mater. 322, 767–776 (2010)

    Article  Google Scholar 

  24. H.M. Zaki, H.A. Dawoud, Far-Infrared spectra for copper–zinc mixed ferrites. Physica B. 405, 4476–4479 (2010)

    Article  Google Scholar 

  25. R.C. Kambale, K.M. Song, Y.S. Koo, N. Hur, Low temperature synthesis of nano crystalline Dy3+ doped cobalt ferrite: structural and magnetic properties. J. Appl. Phys. 110, 535 (2011)

    Article  Google Scholar 

  26. M. Srivastava, S. Chaubey, A.K. Ojha, Investigation on size dependent structural and magnetic behavior of nickel ferrite nanoparticles prepared by sol-gel and hydrothermal methods. Mater. Chem. Phys. 118, 174–180 (2009)

    Article  Google Scholar 

  27. Z. Yang, Z. Ye, Z. Xu, B. Zhao, Effect of the morphology on the optical properties of ZnO nanostructures. Physica E. 42, 116–119 (2010)

    Article  Google Scholar 

  28. A. Gholizadeh, E. Jafari, Effects of sintering atmosphere and temperature on structural and magnetic properties of Ni–Cu–Zn ferrite nano-particles: magnetic enhancement by a reducing atmosphere. J. Magn. Magn. Mater. 422, 328–336 (2017)

    Article  Google Scholar 

  29. M.M. Eltabey, K.M. El-Shokrofy, S.A. Gharbia, Enhancement of the magnetic properties of Ni–Cu–Zn ferrites by the non-magnetic Al3+-ions substitution. J. Alloys Compd. 509, 2473–2477 (2011)

    Article  Google Scholar 

  30. M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, M.R. Jeddy, Nanocrystalline Ce-doped copper ferrite: synthesis, characterization, and its photocatalyst application. J. Mater. Sci. Mater. Electron. 27, 11691–11697 (2016)

    Article  Google Scholar 

  31. K. Nakamoto, Infrared and raman spectra of inorganic and coordination compounds, part A and part B, Two Volume Set, 6th edn. Sex. Transm. Infect. 85, 182–186 (2008)

    Google Scholar 

  32. U.B. Gawas, V.M.S. Verenkar, S.R. Barman, S.S. Meena, P. Bhatt, Synthesis of nanosize and sintered Mn0.3Ni0.3Zn0.4Fe2O4 ferrite and their structural and dielectric studies. J. Alloys Compd. 555, 225–231 (2013)

    Article  Google Scholar 

  33. R.S. Yadav, I. Kuřitka, J. Vilcakova, J. Havlica, J. Masilko, L. Kalina et al., Structural, dielectric, electrical and magnetic properties of CuFe2O4 nanoparticles synthesized by honey mediated sol–gel combustion method and annealing effect. J. Mater. Sci. Mater. Electron. 28, 6245–6261 (2017)

    Article  Google Scholar 

  34. R.S. Yadav, I. Kuřitka, J. Vilcakova, J. Havlica, L. Kalina et al., Influence of La3+ on structural, magnetic, dielectric, electrical and modulus spectroscopic characteristics of single phase CoFe2–xLaxO4 nanoparticles. J. Mater. Sci. Mater. Electron. 28, 9139–9154 (2017)

    Article  Google Scholar 

  35. Y. Kang, L. Wang, Y. Wang, H. Zhang, Y. Wang, D. Hong, Y. Qv, S. Wang, Construction and enhanced gas sensing performances of CuO-modified α-Fe2O3 hybrid hollow spheres. Sensors Actuators B. 177, 570–576 (2013)

    Article  Google Scholar 

  36. L. Zhang, J. Zhao, H. Lu, L. Gong, L. Li, J. Zheng, H. Li, Z. Zhu, High sensitive and selective formaldehyde sensors based on nanoparticle-assembled ZnO micro-octa-hedrons synthesized by homogeneous precipitation method. Sensors Actuators B. 160, 364–370 (2011)

    Article  Google Scholar 

  37. S. Singhal, S. Jauhar, N. Lakshmi, S. Bansal, Mn3+ substituted Co-Cd ferrites, CoCd0.4MnxFe1.6–xO4 (0.1 ≤ x ≤ 0.6): cation distribution, structural, magnetic and electrical properties. J. Mol. Struct. 1038, 45–51 (2013)

    Article  Google Scholar 

  38. A. Miller, Distribution of cations in spinels. J. Appl. Phys. 30, S24–S25 (1959)

    Article  Google Scholar 

  39. S. Singhal, S. Jauhar, Investigation of structural, magnetic, electrical and optical properties of chromium substituted cobalt ferrites (CoCrxFe2–xO4, 0 ≤ x ≤ 1) synthesized using sol gel auto combustion method. J. Mol. Struct. 1012, 182–188 (2012)

    Article  Google Scholar 

  40. S. Singhal, S.K. Barthwal, K. Chandra, XRD, magnetic and mössbauer spectral studies of nano size aluminum substituted cobalt ferrites (CoAlxFe2–xO4). J. Magn. Magn. Mater. 306, 233–240 (2006)

    Article  Google Scholar 

  41. A.V. Raut, R.S. Barkule, D.R. Shengule, K.M. Jadhav, Synthesis, structural investigation and magnetic properties of Zn2+ substituted cobalt ferrite nanoparticles prepared by the sol-gel auto-combustion technique. J. Magn. Magn. Mater. 358, 87–92 (2014)

    Article  Google Scholar 

  42. T. Ibusuki, S. Kojima, O. Kitakami, Y. Shimada, Magnetic anisotropy and behaviors of Fe nanoparticles. IEEE. Trans. Magn. 37, 2223–2225 (2001)

    Article  Google Scholar 

  43. L. Néel, Magnetic properties of ferrites: ferrimagnetism and antiferromagnetism. Ann. Phys. 3, 137–198 (1948)

    Article  Google Scholar 

  44. N.K. Dung, N.H. Tuan, The effect of cobalt substitution on structure and magnetic properties of nickel ferrite. J. Sci. Math. Phys. 25, 153–159 (2009)

    Google Scholar 

  45. S. Bhukal, T. Namgyal, S. Mor, S. Bansal, S. Singhal, Structural, electrical, optical and magnetic properties of chromium substituted Co-Zn nanoferrites Co0.6Zn0.4CrxFe2–xO4 (0 ≤ x ≤ 1.0) prepared via sol–gel Au-to-combustion method. J. Mol. Struct. 1012, 162–167 (2012)

    Article  Google Scholar 

  46. J.S. Smart, The Néel theory of ferrimagnetism. Am. J. Phys. 23, 356–370 (2005)

    Article  Google Scholar 

  47. P.A. Shaikh, R.C. Kambale, A.V. Rao, Y.D. Kolekar, Effect of Ni doping on structural and magnetic properties of Co1–xNixFe1.9Mn0.1O4. J. Magn. Magn. Mater. 322, 718–726 (2010)

    Article  Google Scholar 

  48. J.M.D. Coey, Rare earth-iron permanent magnets. ChemInform. 23 (2010). https://doi.org/10.1002/chin.199211311

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aimin Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, X., Sun, A., Han, Y. et al. Structural and magnetic properties of Bi3+ ion doped Ni–Cu–Co nano ferrites prepared by sol–gel auto combustion method. J Mater Sci: Mater Electron 30, 4644–4657 (2019). https://doi.org/10.1007/s10854-019-00757-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00757-8

Navigation