Skip to main content
Log in

Strong red emission and enhanced electrostrain in (Bi0.5Na0.5)0.935−xPrxBa0.065Ti1−xSbxO3 lead-free multifunctional ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lead-free perovskite (Bi0.5Na0.5)0.935−xPrxBa0.065Ti1−xSbxO3 (BNBT6.5–xPS) ceramics are prepared by ordinary sintering technique. The compositional dependence of phase structure, electrical and photoluminescence properties of the ceramics was systematically investigated. Results showed that all samples exhibit pure perovskite structure with dense microstructures. With the addition of PS, a strong red emission located at 610 nm and a weak red emission at 660 nm under a light 450 nm excitation was observed. The strong red emission band is ascribed to the inter-4f transition from the excited 1D2 to the ground state 3H4 and the weak red emission located at 660 nm is due to the 3P0 → 3F2 transition. And then the BNBT6.5–0.004PS ceramic exhibited the strongest photoluminescence property. Besides the excellent photoluminescence properties, PS modifications induced an enhanced filed-induced strain. At x = 0.001, a large strain of 0.31% was obtained at a driving field of 70 kV/cm. As a multifunctional material, it has potential application as a multifunctional device such as optical-electro integration and coupling device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics, (Academic Press, London, 1971)

    Google Scholar 

  2. N. Chen, W. Yao, C. Liang, S. Xiao, J. Hao, Z. Xu, R. Chu, Ceram. Int. 42, 9660–9666 (2016)

    Article  Google Scholar 

  3. A. Hussain, J.U. Rahman, F. Ahmed, J.S. Kim, M.H. Kim, T.K. Song, W.J. Kim, J. Eur. Ceram. Soc. 35, 919–925 (2015)

    Article  Google Scholar 

  4. Y. Saito, H. Takao., T. Tani, T. Nonoyama, K. Takatori, T. Homma, M. Nakamura, Nature. 432, 84 (2004)

    Article  Google Scholar 

  5. J. Rödel, W. Jo, K.T. Seifert, E.M. Anton, T. Granzow, D. Damjanovic, J. Am. Ceram. Soc. 92, 1153–1177 (2009)

    Article  Google Scholar 

  6. S. Zhang, R. Xia, T.R. Shrout, J. Electroceram. 19, 251–257 (2007)

    Article  Google Scholar 

  7. W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, J. Rödel, J. Electroceram. 29, 71–93 (2012)

    Article  Google Scholar 

  8. T. Takenaka, K.I. Maruyama, K. Sakata, J. Appl. Phys. 30, 2236 (1991)

    Article  Google Scholar 

  9. X. Liu, X. Xu, H. Du, J. Inorg. Mater. 33, 683–687 (2018)

    Article  Google Scholar 

  10. L. Li, J. Hao, Z. Xu, W. Li, R. Chu, Mater. Lett. 184, 152–156 (2016)

    Article  Google Scholar 

  11. X. Liu, J. Shi, F. Zhu, H. Du, T. Li, J. Inorg. Mater. 1–6 (2018)

  12. W. Bai, P. Zheng, J. Wen, F. Zhang, D. Chen, J. Zhai, Z. Ji, Dalton. Trans. 46, 15340–15353 (2017)

    Article  Google Scholar 

  13. K. Wang, A. Hussain, W. Jo, J. Rödel, J. Am. Ceram. 95, 2241–2247 (2012)

    Article  Google Scholar 

  14. W. Bai, J. Xi, J. Zang, B. Shen, J. Zhai, H. Yan, J. Eur. Ceram. Soc. 35, 2489–2499 (2015)

    Article  Google Scholar 

  15. S.T. Zhang, A.B. Kounga, E. Aulbach, H. Ehrenberg, J. Rödel, Appl. Phys. Lett. 91, 112906 (2007)

    Article  Google Scholar 

  16. J. Hao, B. Shen, J. Zhai, C. Liu, X. Li, X. Gao, J. Appl. Phys. 113, 114106 (2013)

    Article  Google Scholar 

  17. J. Hao, Z. Xu, R. Chu, W. Li, P. Fu, J. Du, G. Li, J. Eur. Ceram. Soc. 36, 4003–4014 (2016)

    Article  Google Scholar 

  18. W. Bai, D. Chen, P. Zeng, B. Shen, J. Zhai, Z. Ji, Dalton. Trans. 45, 8573–8586(2016)

  19. X. Jia, J. Zang, Y. Gao, J. Wang, P. Zheng, Mater. Res. Bull. 89, 11–15 (2017)

    Article  Google Scholar 

  20. H.S. Han, W. Jo, J.K. Kang, J. Appl. Phys. 113, 113–126 (2013)

    Google Scholar 

  21. B. Hu, Z. Pan, M. Dai, J. Am. Ceram. Soc. 97, 3877–3882 (2015)

    Article  Google Scholar 

  22. A. Hussain, C.W. Ahn, J.S. Lee, Sens. Actuators A. 158, 84–89 (2010)

    Article  Google Scholar 

  23. W. Bai, D. Chen, P. Zheng, J. Alloys Compd. 709, 646–657 (2017)

    Article  Google Scholar 

  24. Y. Chang, X. Sun, W. Xiong, J. Eur. Ceram. Soc. 37, 859–864 (2017)

    Article  Google Scholar 

  25. J. Hao, Z. Xu, R. Chu, J. Alloys Compd. 64, 7857–7865 (2015)

    Google Scholar 

  26. W. Bai, D. Chen, P. Zheng, J. Xi, Y. Zhou, B. Shen, Z. Ji, J. Eur. Ceram. Soc. 37, 2591–2604 (2017)

    Article  Google Scholar 

  27. J. Hao, Z. Xu, R. Chu, S. Chu, W. Li, P. Fu, C. Hu, Mater. Lett. 193, 138–141 (2017)

    Article  Google Scholar 

  28. K. Ruan, X. Chen, T. Liang, J. Appl. Phys. 103, 627 (2008)

    Google Scholar 

  29. H. Sun, D. Peng, X. Wang, J. Appl. Phys. 110, 2087 (2011)

    Google Scholar 

  30. H. Sun, D. Peng, X. Wang, J. Appl. Phys. 111, 2087 (2012)

    Google Scholar 

  31. J. Hao, Z. Xu, R. Chu, J. Eur. Ceram. Soc. 37, 877–882 (2017)

    Article  Google Scholar 

  32. J. Hao, Z. Xu, R. Chu, Scr. Mater. 122, 10–13 (2016)

    Article  Google Scholar 

  33. J. Hao, W. Bai, W. Li, J. Appl. Phys. 114, 113 (2013)

    Google Scholar 

  34. K.T.P. Seifert, W. Jo, J. Rödel, J. Am. Ceram. 93, 1392–1396 (2010)

    Google Scholar 

  35. J. Hao, X. Zhang, Z. Xu, Ceram. Int. 42, 12964–12970 (2016)

    Article  Google Scholar 

  36. E.M. Anton, W. Jo, D. Damjanovic, J. Appl. Phys. 110, 094108 (2011)

    Article  Google Scholar 

  37. L. Li, J. Hao, R. Chu, Dielectric. Ceram. Int. 42, 9419–9425 (2016)

    Article  Google Scholar 

  38. P. Fang, P. Liu, Z. Xi, J. Appl. Phys. 595, 148–152 (2014)

    Google Scholar 

  39. Z. Peng, Y. Chen, Q. Chen J. Alloys Compd. 590, 210–214 (2014)

    Article  Google Scholar 

  40. S.S.N. Bharadwaja, S.B. Krupanidhi, J. Appl. Phys. 86, 5862–5869 (1999)

    Article  Google Scholar 

  41. B.S. Kang, S.K. Choi, C.H. Park, J. Appl. Phys. 94, 1904–1911 (2003)

    Article  Google Scholar 

  42. S. Steinsvik, R. Bugge, J. Gjønnes, J. Phys. Chem. Solids. 58, 969–976 (1997)

    Article  Google Scholar 

  43. J.L. Sommerdijk, A. Bril, A.W.D. Jager, J. Lumin. 8, 341–343 (1974)

    Article  Google Scholar 

  44. H. Zhou, G. Wu, F. Gao, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 57, (2010)

  45. L.S. Chi, R.S. Liu, B.J. Lee, J. Electrochem. Soc. 152, J93–J98 (2005)

    Article  Google Scholar 

  46. P.T. Diallo, K. Jeanlouis, P. Boutinaud J. Alloys Compd. 323, 218–222 (2001)

    Article  Google Scholar 

  47. R. Chen, D. Chen, J. Alloys Compd. 476, 671–674 (2009)

    Article  Google Scholar 

  48. D. Peng, H. Sung, X. Wang, J. Alloys Compd. 511, 159–162 (2012)

    Article  Google Scholar 

  49. Q.J. Chen, W.J. Zhang, X.Y. Huang, G.P. Dong, M.Y. Peng, Q.Y. Zhang, J. Alloys Compd. 513, 139–144 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2016YFB0402701); Focus on research and development plan in shandong province (No. 2017GGX202008); National Natural Science Foundation of China (Nos. 51402144 and 51502127); the Natural Science Foundation of Shandong Province of China (ZR2016EMM02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jigong Hao or Wei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, C., Hao, J., Li, W. et al. Strong red emission and enhanced electrostrain in (Bi0.5Na0.5)0.935−xPrxBa0.065Ti1−xSbxO3 lead-free multifunctional ceramics. J Mater Sci: Mater Electron 29, 13810–13817 (2018). https://doi.org/10.1007/s10854-018-9512-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9512-3

Navigation