Skip to main content

Advertisement

Log in

Effect of 6R and 12R lead iodide polytypes on MAPbI3 perovskite device performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We compare the structural, morphological and electrical properties of two variants of the ITO/ZnO/\(\hbox {CH}_3\hbox {NH}_3\hbox {PbI}_3\)/PDOT:PSS/Au thin film perovskite device made using two structurally different forms of lead iodide. The first device was based on a commercially sourced, common 12R polytype. The second device uses the rarer 6R polytype, as recently synthesized by the authors from depleted sealed lead acid batteries. XRD measurements confirmed the presence of the orthorhombic 6R polytype and the tetragonal 12R polytype. Raman spectroscopy confirmed the presence of all organic–inorganic halide materials. Current–voltage measurements for both samples show good rectifying behavior of the resulting heterogeneous Schottky diodes. The ideality factors and barrier heights were found to be 4.07/4.09 and 0.500/0.496 eV for the 6R/12R polytypes, respectively. The 6R polytype devices appeared to show improved I–V characteristics in comparison to the 12R polytype, thus suggesting an avenue to enhance the performance of MAPbX3 prevoskite devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. E.M. Hutter, M.C. Gélvez-Rueda, A. Osherov, V. Bulović, F.C. Grozema, S.D. Stranks, T.J. Savenije, Direct–indirect character of the bandgap in methylammonium lead iodide perovskite. Nat Mater. 16, 115–120 (2017)  

    Article  Google Scholar 

  2. J.H. Im, C.R. Lee, J.W. Lee, S.W. Park, N.G. Park, 6.5 percent efficient perovskite quantum-dot-sensitized solar cell. R. Soc. Chem. 3, 4088–4093 (2011)

    Google Scholar 

  3. F. Giustino, H.J. Snaith, Toward lead-free perovskite solar cells. ACS Energy Lett. 1, 1233–1240 (2016)

    Article  Google Scholar 

  4. M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2(338), 643–647 (2012)

    Article  Google Scholar 

  5. K. Wang, C. Liu, P. Du, H. Zhang, X. Gong, Efficient perovskite hybrid solar cells through a homogeneous high-quality organolead iodide layer. Mater. Views 11(27), 3369–3376 (2015)

    Google Scholar 

  6. Q. Zhou, Z. Jin, H. Li, J. Wang, Enhancing performance and uniformity of \(\text{CH}_{3}\text{NH}_{3}\text{PbI}_{3-x}\text{Cl}_{x}\) perovskite solar cells by air-heated-oven assisted annealing under various humidities. Sci. Rep. 6, 21257 (2016)

    Article  Google Scholar 

  7. B.S. Mwankemwa, F.J. Nambala, F. Kyeyune, T.T. Hlatshwayo, J.M. Nel, M. Diale, Influence of ammonia concentration on the microstructure, electrical and Raman properties of low temperature chemical bath deposited ZnO nanorods. Mater. Sci. Semicond. Process. 71, 209–216 (2017)

    Article  Google Scholar 

  8. T.D. Malevu, R.O. Ocaya, K.G. Tshabalala, C. Fernandez, Synthesis and characterization of high quality \(\text{PbI}_2\) nanopowders from depleted SLA accumulator anode and cathodes. Appl. Phys. A 122, 630 (2016)

    Article  Google Scholar 

  9. W.T. Wang, S.K. Das, Y. Tai, Fully ambient-processed perovskite film for perovskite solar cells: Effect of solvent polarity on lead iodide. Appl. Mater. Interfaces 9, 10743–10751 (2017)

    Article  Google Scholar 

  10. J. Yu, X. Chen, Y. Wang, H. Zhou, M. Xue, Y. Xu, Z. Li, C. Ye, J. Zhang, P.A. van Aken, P.D. Lund, H. Wang, A high-performance self-powered broadband photodetector based on a \(\text{CH}_{3}\text{NH}_{3}\text{PbI}_3\) perovskite/ZnO nanorod array heterostructure. J. Mater. Chem. C 4, 7302–730 (2016)

    Article  Google Scholar 

  11. P. Zhao, L. Bian, L. Wang, J. Xu, A. Chang, Enhanced open voltage of \(\text{ BiFeO}_3\) polycrystalline film by surface modification of organolead halide perovskite. Appl. Phys. Lett. 105, 013901 (2014)

    Article  Google Scholar 

  12. M.M. Rahman, N. Uekawa, F. Shiba, Y. Okawa, M. Sakai, K. Yamamoto, K. Kudo, T. Konishi, Effect of the filtration of \(\text{PbI}_2\) solution for zinc oxide nanowire based perovskite solar cells. Jpn. J. Appl. Phys. 55, 01AE09 (2016)

    Article  Google Scholar 

  13. X. Zou, H. Fan, Y. Tian, S. Yan, Synthesis of \(\text{Cu}_{2}\text{O/ZnO}\) hetero-nanorod arrays with enhanced visible light-driven photocatalytic activity. CrystEngComm 16(6), 1149–1156 (2014)

    Article  Google Scholar 

  14. V. Singh, S. Arora, M. Arora, V. Sharma, R.P. Tandoh, Characterization of doped PEDOT: PSS and its influence on the performance and degradation of organic solar cells. Semicond. Sci. Technol. 29, 045020 (2014)

    Article  Google Scholar 

  15. M. Stavytska Barba, M. Kelley, Surface-enhanced Raman study of the interaction of PEDOT: PSS with plasmonically active nanoparticles. J. Phys. Chem. C 114(14), 6822–6830 (2010)

    Article  Google Scholar 

  16. R. Zamiri, A. Rebelo, G. Zamiri, A. Adnani, A. Kuashal, M.S. Belsley, J.M.F. Ferreira, Far-infrared optical constants of ZnO and ZnO/Ag nanostructures. R. Soc. Chem. 4, 20902–20908 (2014)

    Google Scholar 

  17. D. Das, P. Mondal, Photoluminescence phenomena prevailing in c-axis oriented intrinsic ZnO thin films prepared by rf magnetron sputtering. R. Soc. Chem. 4, 35735–35743 (2014)

    Google Scholar 

  18. M. Ledinsky, P. Loper, B. Niesen, J. Holovsky, S. Moon, J. Yum, S. De Wolf, A. Fejfar, C. Balli, Raman spectroscopy of organicinorganic halide perovskites. J. Phys. Chem. Lett. 5, 401–406 (2015)

    Article  Google Scholar 

  19. C. Quarti, G. Grancini, E. Mosconi, P. Bruno, J.M. Ball, M.M. Lee, H.J. Snaith, A. Petrozza, F.D. Angelis, The Raman spectrum of the \(\text{CH}_{3}\text{NH}_{3}\text{PbI}_{3}\) hybrid perovskite: interplay of theory and experiment. J. Phys. Chem. Lett. 5, 279–284 (2014)

    Article  Google Scholar 

  20. Z. Liang, S. Zhang, X. Xu, N. Wang, J. Wang, Z. Bi, G. Xu, N. Yuan, J. Ding, A large grain size perovskite thin film with a dense structure for planar heterojunction solar cells via spray deposition under ambient conditions. R. Soc. Chem. 5, 60562–60569 (2015)

    Google Scholar 

  21. P. Pistor, A. Ruiz, A. Cabot, V. Izquierdo-Roca, Advanced Raman spectroscopy of methylammonium lead iodide: development of a non-destructive characterization methodology. Sci. Rep. 6, 35973 (2016)

    Article  Google Scholar 

  22. V.V. Kislyuk, O.P. Dimitriev, Nanorods and nanotubes for solar cells. J. Nanosci. Nanotechnol. 8, 131–148 (2008)

    Article  Google Scholar 

  23. L. Yang, A.T. Barrows, D.G. Lidzey, T. Wang, Recent progress and challenges of organometal halide perovskite solar cells. Rep. Prog. Phys. 79, 026501 (2016)

    Article  Google Scholar 

  24. I.G. Valls, M.L. Cantu, Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review. Energy Environ. Sci. 2, 19–34 (2009)

    Article  Google Scholar 

  25. I.G. Ravirajan, A.M. Peiro, M.K. Nazeeruddin, M. Graetzel, D.D.C. Bradley, J.R. Durrant, J. Nelson, Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer. J. Phys. Chem. B 110(15), 7635–7639 (2006)

    Article  Google Scholar 

  26. S. Agarwal, M. Seetharaman, N.K. Kumawat, A.S. Shaibal, S.K. Sarkar, D. Kabra, M.A.G. Namboothiry, P.R. Nair, On the uniqueness of ideality factor and voltage exponent of perovskite-based solar cells. J. Phys. Chem. Lett. 5(23), 4115–4121 (2014)

    Article  Google Scholar 

  27. H. Kanda, A. Uzum, A.K. Baranwal, T.A. Nirmal Peiris, T. Umeyama, H. Imahori, H. Segawa, T. Miyasaka, S. Ito, Analysis of sputtering damage on I-V curves for perovskite solar cells and simulation with reversed diode model. J. Phys. Chem. Lett. 120(50), 28441–28447 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the National Research Foundation, through the NRF-DST Innovation Grant No. 94944, and the University of the Free State for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. D. Malevu or R. O. Ocaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malevu, T.D., Mwankemwa, B.S., Tshabalala, K.G. et al. Effect of 6R and 12R lead iodide polytypes on MAPbI3 perovskite device performance. J Mater Sci: Mater Electron 29, 13011–13018 (2018). https://doi.org/10.1007/s10854-018-9422-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9422-4

Navigation