Skip to main content
Log in

A new CO2 detection system based on the trirutile-type CoSb2O6 oxide

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

CoSb2O6 powders were synthesized by means of the colloidal method, using cobalt nitrate, antimony chloride, ethylenediamine, and ethyl alcohol as reagents. The crystalline phase of the oxide was obtained at 600 °C and analyzed by X-ray diffraction. The CoSb2O6 showed a tetragonal crystalline structure with cell parameters a = 4.6495 Å, c = 9.2763 Å, and a P42/mnm spatial group. The powders were analyzed by means of field emission scanning electron microscopy, finding microcubes (3D) with sizes of 10–25 µm, and microrods with lengths and diameters of 13–27 and 4.5–13.5 µm, respectively. Thick films prepared with oxide’s powders were exposed to air-CO2 (100‒100 ppm) atmospheres at 250 °C. Material’s response increased as the CO2 was injected into the measuring chamber, recording a phase change and an average impedance magnitude (Δ|Z|) of ~ 2.623 kΩ. Low CO2 concentrations were detected at relatively low temperatures, which turns the CoSb2O6 into a potential gas sensor. Taking advantage of this, an electronic device was successfully developed to detect concentrations of CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H. Gómez-Pozos, J.L. González-Vidal, G.A. Torres, J. Rodríguez-Baez, A. Maldonad, L. de la Olvera, D.R. Acosta, M. Avendaño-Alejo, L. Castañeda, Sensors 13, 3432 (2013)

    Article  Google Scholar 

  2. V.M. Rodríguez-Betancourtt, H. Guillén-Bonilla, M. Flores-Martínez, A. Guillén-Bonilla, J.P. Moran-Lazaro, J.T. Guillen-Bonilla, M.A. González, L. de la Olvera-Amador, J. Nanomater. (2017). https://doi.org/10.1155/2017/8792567

    Google Scholar 

  3. P. Navarro-Botella, J. García-Aguilar, Á Berenguer-Murcia, D. Cazorla-Amorós, Mater. Res. Bull. 93, 102 (2017)

    Article  Google Scholar 

  4. H. Guillén-Bonilla, M. Flores-Martínez, V.M. Rodríguez-Betancourtt, A. Guillen-Bonilla, J. Reyes-Gómez, L. Gildo-Ortiz, L. de la Olvera-Amador, J. Santoyo-Salazar, Sensors 16, 1 (2016)

    Article  Google Scholar 

  5. L. Gildo-Ortiz, H. Guillén-Bonilla, J. Santoyo-Salazar, L. de la Olvera, T.V.K. Karthik, E. Campos-González, J. Reyes-Gómez, J. Nanomater. (2014). https://doi.org/10.1155/2014/164380

    Google Scholar 

  6. J.L. Castro-Mayorga, M.J. Fabra, L. Cabedo, J.M. Lagaron, Nanomaterials 7, 1 (2017)

    Google Scholar 

  7. L. Sang-Jin, M.K. Waltraud, J. Am. Ceram. Soc. 81, 2605 (1998)

    Google Scholar 

  8. A. Mirzaei, G. Neri, Sens. Actuators B 237, 749 (2016)

    Article  Google Scholar 

  9. D.R. Miller, S.A. Akbar, P.A. Morris, Sens. Actuators B 204, 250 (2014)

    Article  Google Scholar 

  10. L. Gildo-Ortiz, H. Guillén-Bonilla, J. Reyes-Gómez, V.M. Rodríguez-Betancourtt, L. de la Olvera-Amador, S.I. Eguía-Eguía, A. Guillén-Bonilla, J. Santoyo-Salazar, J. Nanomater. (2017). https://doi.org/10.1155/2017/8174987

    Google Scholar 

  11. P.T. Moseley, Sens. Actuators B 6, 149 (1992)

    Article  Google Scholar 

  12. K. Hyo-Joong, L. Jong-Heun, Sens. Actuators B 192, 607 (2014)

    Article  Google Scholar 

  13. C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Sensors 10, 2088 (2010)

    Article  Google Scholar 

  14. M. Hjiri, L.E. Mira, S.G. Leonardi, A. Pistone, L. Mavilia, G. Neri, Sens. Actuators B 196, 413 (2014)

    Article  Google Scholar 

  15. Q. Wang, N. Yao, C. Liu, D. An, Y. Li, Y. Zou, X. Tong, J. Nanomater. 2016, 1 (2016)

    Google Scholar 

  16. A. Guillén-Bonilla, V.M. Rodríguez-Betancourtt, M. Flores-Martínez, O. Blanco-Alonso, J. Reyes-Gómez, L. Gildo-Ortiz, H. Guillén-Bonilla, Sensors 14, 15802 (2014)

    Article  Google Scholar 

  17. H. Guillén-Bonilla, L. Gildo-Ortiz, L. de la Olvera-Amador, J. Santoyo-Salazar, V.M. Rodríguez-Betancourtt, A. Guillen-Bonilla, J. Reyes-Gómez, J. Nanomater. (2015). https://doi.org/10.1155/2015/308465

    Google Scholar 

  18. A. Guillén-Bonilla, V.M. Rodríguez-Betancourtt, J.T. Guillén-Bonilla, A. Sánchez-Martínez, L. Gildo-Ortiz, J. Santoyo-Salazar, J.P. Morán-Lázaro, H. Guillén-Bonilla, O. Blanco-Alonso, Ceram. Int. 43, 13635 (2017)

    Article  Google Scholar 

  19. C. Balamurugan, A.R. Maheswari, D.W. Lee, Sens. Actuators B 205, 289 (2014)

    Article  Google Scholar 

  20. A. Singh, A. Singh, S. Singh, P. Tandon, Chem. Phys. Lett. 646, 41 (2016)

    Article  Google Scholar 

  21. C.R. Michel, A.H. Martínez-Preciado, J.P. Morán-Lázaro, H. Guillén-Bonilla, ECS Trans. 25, 49 (2010)

    Article  Google Scholar 

  22. D. Larcher, A.S. Prakash, L. Laffont, M. Womes, J.C. Jumas, J. Olivier-Fourcade, M.S. Hedge, J.M. Tarascon, J. Electrochem. Soc. 153, A1778 (2006)

    Article  Google Scholar 

  23. C.R. Michel, A.H. Martínez, S. Jiménez, Sens. Actuators B 132, 45 (2008)

    Article  Google Scholar 

  24. C.R. Michel, H. Guillén-Bonilla, A.H. Martínez-Preciado, J.P. Morán-Lázaro, Sens. Actuators B 143, 278 (2009)

    Article  Google Scholar 

  25. H. Haeuseler, Spectrochim. Acta Part A Mol. Spectrosc 37, 487 (1981)

    Article  Google Scholar 

  26. H. Mizoguchi, P.M. Woodward, Chem. Mater. 16, 5233 (2004)

    Article  Google Scholar 

  27. A. Jamal, M.M. Rahman, S. Bahadar-Khan, M. Faisal, K. Akhtar, M.A. Rub, A.M. Asiri, A.O. Al-Youbi, Appl. Surf. Sci. 261, 52 (2012)

    Article  Google Scholar 

  28. Z.X. Deng, C. Wang, X.M. Sun, Y.D. Li, Inorg. Chem. 41, 869 (2002)

    Article  Google Scholar 

  29. X. Wang, Y. Li, Inorg. Chem. 45, 7522 (2006)

    Article  Google Scholar 

  30. C.R. Michel, A.H. Martínez, F. Huerta-Villalpando, J.P. Morán-Lázaro, J. Alloy Compd. 484, 605 (2009)

    Article  Google Scholar 

  31. J.P. Morán-Lázaro, O. Blanco, V.M. Rodríguez-Betancourtt, J. Reyes-Gómez, C.R. Michel, Sens. Actuators B 226, 518 (2016)

    Article  Google Scholar 

  32. H. Tsuji, A. Okamura-Yoshida, T. Shishido, H. Hattori, Langmuir 19, 8793 (2003)

    Article  Google Scholar 

  33. M.I. Baraton, L. Merhari, Rev. Adv. Mater. Sci 4, 15 (2003)

    Google Scholar 

  34. C.R. Michel, A.H. Martínez-Preciado, J.P. Morán-Lázaro, Sens. Actuators B 140, 149 (2009)

    Article  Google Scholar 

  35. C.K. Alexander, M.N.O. Sadiku, Fundamentals of Electric Circuits, 4th edn. (McGraw Hill, New York, 2012), pp. 1–1056

    Google Scholar 

  36. C.A. Smith, A.B. Corripio, Principles and Practice of Automatic Process Control, 2nd edn. (Wiley, New York, 1997), pp. 1–783

    Google Scholar 

  37. S. Lee, S.U.S. Choi, S. Li, J.A. Eastman, J. Heat Transf. ASME 121, 280 (1999)

    Article  Google Scholar 

  38. D.C. Fowles, M.J. Christie, R. Edelberg, W.W. Grings, D.T. Lykken, P.H. Venables, Psychophysiol. Comm. Rep. 18, 232 (1981)

    Article  Google Scholar 

  39. W.C. Ang, P. Kropelnicki, J.M. Lin-Tsai, K. Chew-Leong, C. Seng-Tan, Proced. Eng. 94, 6 (2014)

    Article  Google Scholar 

  40. V. Ferri, F.R. Stornelli, G. Parente, Barile, Int. J. Circuit Theory Appl. 45, 2149 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Mexico’s National Council of Science and Technology (CONACyT) for their financial support (Project No. 279937). This work was partially funded by PRODEP 2017’s projects: F-PROMEP-39/Rev-04 SEP-23-005 (DSA/103.5/16/10313: Nos. 236214 and 237461), F-PROMEP-74/Rev-05 (511-6/17-8091: No. 238639), PRODEP 2017 Project No. 236110 and Project No. 511-6/17-7354 (Fortalecimiento de Cuerpos Académicos Convocatoria 2017). Authors express their gratitude to Carlos Michel-Uribe for giving us the possibility to use his facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Trinidad Guillen Bonilla.

Ethics declarations

Conflict of interest

Authors declare not conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guillén Bonilla, A., Rodríguez Betancourtt, V.M., Guillén Bonilla, H. et al. A new CO2 detection system based on the trirutile-type CoSb2O6 oxide. J Mater Sci: Mater Electron 29, 15741–15753 (2018). https://doi.org/10.1007/s10854-018-9228-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9228-4

Navigation