Skip to main content
Log in

Morphology and size controlled synthesis of zinc oxide nanostructures and their optical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report the facile synthesis of zinc oxide (ZnO) nanostructures with different sizes and morphologies by a rapid microwave assisted synthesis using ethylenediaminetetraacetic acid (EDTA) and/or trisodium citrate as chelating agents and their characterization. The obtained ZnO nanostructures having hexagonal Wurtzite structure with different morphologies. With the aid of EDTA and/or trisodium citrate, flowers, flakes, solid spheres and porous spheres were obtained by controlling the crystal growth habit and the concentration of ZnO growth units under microwave irradiation. The optical behaviour was analyzed using UV–Vis spectroscopic technique which indicates that the prepared ZnO nanostructures exhibit band gap between 3.27 and 3.37 eV due to potential fluctuations in electronic band structure of ZnO owing to surface-related defects and/or adsorbed species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C. Klingshirn, ZnO: material, physics and applications. Chem. Phys. Chem. 8, 782–803 (2007)

    Article  Google Scholar 

  2. A. Kołodziejczak-Radzimska, T. Jesionowski, Zinc oxide–from synthesis to application: a review. Materials 7, 2833–2881 (2014)

    Article  Google Scholar 

  3. C.W. Litton, D.C. Reynolds, T.C. Collins, Zinc Oxide Materials for Electronic and optoelectronic device applications (Wiley, New York, 2011)

    Book  Google Scholar 

  4. E. Guziewicz, K. Kopalko, G. Łuka, M.I. Łukasiewicz, T. Krajewski, B.S. Witkowski, S. Gierałtowska, Zinc oxide for electronic, photovoltaic and optoelectronic applications. Low Temp. Phys. 37, 235 (2011)

    Article  Google Scholar 

  5. A. Pimentel, J. Rodrigues, P. Duarte, D. Nunes, F.M. Costa, T. Monteiro, R. Martins, E. Fortunato, Effect of solvents on ZnO nanostructures synthesized by solvothermal method assisted by microwave radiation: a photocatalytic study. J. Mater. Sci. 50, 5777–5787 (2015)

    Article  Google Scholar 

  6. T. Krishnakumar, R. Jayaprakash, N. Pinna, N. Donato, A. Bonavita, G. Micali, G. Neri, CO gas sensing of ZnO nanostructures synthesized by an assisted microwave wet chemical route. Sens. Actuators B 143, 198–204 (2009)

    Article  Google Scholar 

  7. Z. Petrović, M. Ristić, S. Musić, The effect of sodium polyanethol sulfonate on the precipitation of zinc oxide. J. Alloys Compd. 694, 1331–1337 (2017)

    Article  Google Scholar 

  8. Z. Li, Y. Fang, L. Peng, D. Pan, M. Wu, EDTA-assisted synthesis of rose-like ZnO architectures. Cryst. Res. Technol. 45, 1083–1086 (2010)

    Article  Google Scholar 

  9. C. Wang, Y. Gao, L. Wang, P. Li, Morphology regulation, structural, and photocatalytic properties of ZnO hierarchical microstructures synthesized by a simple hydrothermal method. Phys. Status Solidi A 214, 1600876 (2017)

    Article  Google Scholar 

  10. Y.A. Sumanth, R.A. Sujatha, S. Mahalakshmi, P.C. Karthika, S. Nithiyanantham, S. Saravanan, M. Azagiri, Synthesis and characterization of nanophase zinc oxide materials. J. Mater. Sci.: Mater. Electron. 27, 1616–1621 (2016)

    Google Scholar 

  11. J. Huang, C. Xia, L. Cao, X. Zeng, Facile microwave hydrothermal synthesis of zinc oxide one-dimensional nanostructure with three-dimensional morphology. Mater. Sci. Eng. B 150, 187–193 (2008)

    Article  Google Scholar 

  12. F. Li, L. Hu, Z. Li, X. Huang, Influence of temperature on the morphology and luminescence of ZnO micro and nanostructures prepared by CTAB-assisted hydrothermal method. J. Alloys Compd. 465, 14–19 (2008)

    Article  Google Scholar 

  13. S. Cho, S. Jung, K. Lee, Morphology controlled growth of ZnO nanostructures using microwave irradiation: from basic to complex structures. J. Phys. Chem. C 112, 12769–12776 (2008)

    Article  Google Scholar 

  14. S. Cho, J. Jang, S. Jung, B.R. Lee, E. Oh, K. Lee, Precursor effects of citric acid and citrates on ZnO crystal formation. Langmuir 25, 3825–3831 (2009)

    Article  Google Scholar 

  15. M. Venkatesh, G.S. Kumar, S. Viji, S. Karthi, E.K. Girija, Microwave assisted combustion synthesis and characterization of nickel ferrite nanoplatelets. Mod. Electron. Mater. 2, 74–78 (2016)

    Article  Google Scholar 

  16. G.S. Kumar, J. Akbar, R. Govindan, E.K. Girija, M. Kanagaraj, A novel rhombohedron-like nickel ferrite nanostructure: microwave combustion synthesis, structural characterization and magnetic properties. J. Sci.: Adv. Mater. Dev. 1, 282–285 (2016)

    Google Scholar 

  17. I. Bilecka, M. Niederberger, Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2, 1358–1374 (2010)

    Article  Google Scholar 

  18. Y. Zhu, F. Chen, Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chem. Rev. 114, 6462–6555 (2014)

    Article  Google Scholar 

  19. T. Prakash, G. Neri, A. Bonavita, E.R. Kumar, K. Gnanamoorthi, Structural, morphological and optical properties of Bi-doped ZnO nanoparticles synthesized by a microwave irradiation method. J. Mater. Sci.: Mater. Electron. 26, 4913–4921 (2015)

    Google Scholar 

  20. X. Zhao, L. Qi, Rapid microwave-assisted synthesis of hierarchical ZnO hollow spheres and their application in Cr(VI) removal. Nanotech. 23, 235604 (2012)

    Article  Google Scholar 

  21. O. Akhavan, M. Mehrabian, K. Mirabbaszadeh, R. Azimirad, Hydrothermal synthesis of ZnO nanorod arrays for photocatalytic inactivation of bacteria. J. Phys. D: Appl. Phys. 42, 225305 (2009)

    Article  Google Scholar 

  22. Y. Köseoğlua, A simple microwave-assisted combustion synthesis and structural, optical and magnetic characterization of ZnO nanoplatelets. Ceram. Inter. 40, 4673–4679 (2014)

    Article  Google Scholar 

  23. A. Manikandan, E. Manikandan, B. Meenatchi, S. Vadivel, S.K. Jaganathan, R. Ladchumananandasivam, M. Henini, M. Maaza, J.S. Aananda, Rare earth element (REE) lanthanum doped zinc oxide (La: ZnO) nanomaterials: synthesis structural optical and antibacterial studies. J. Alloys Compd. 723, 1155–1161 (2017)

    Article  Google Scholar 

  24. L. Tong, Y. Liu, H. Rong, L. Gong, Microwave-assisted synthesis of hierarchical ZnO nanostructures. Mater. Lett. 112, 5–7 (2013)

    Article  Google Scholar 

  25. W. Wang, Y. Zhu, Shape-controlled synthesis of zinc oxide by microwave heating using an imidazolium salt. Inorg. Chem. Commun. 7, 1003–1005 (2004)

    Article  Google Scholar 

  26. M. Ma, Y. Zhu, G. Cheng, Y. Huang, Microwave synthesis and characterization of ZnO with various morphologies. Mater. Lett. 62, 507–510 (2008)

    Article  Google Scholar 

  27. Y. Cao, B. Liu, R. Huang, Z. Xia, S. Ge, Flash synthesis of flower-like ZnO nanostructures by microwave-induced combustion process. Mater. Lett. 65, 160–163 (2011)

    Article  Google Scholar 

  28. N.F. Hamedani, A.R. Mahjoub, A.A. Khodadadi, Y. Mortazavi, Microwave assisted fast synthesis of various ZnO morphologies for selective detection of CO, CH4 and ethanol. Sens. Actuators B 156, 737–742 (2011)

    Article  Google Scholar 

  29. M. Debbarma, S. Das, M. Saha, Effect of reducing agents on the structure of zinc oxide under microwave irradiation. Adv. Manufact. 1, 183–186 (2013)

    Article  Google Scholar 

  30. M.L.D. Peralta, J.G. Serrano, U. Pal, Morphology defined ZnO nanostructures through microwave assisted chemical synthesis: growth mechanism, defect structure, and emission behaviours. Adv. Sci. Lett. 6, 159–166 (2012)

    Article  Google Scholar 

  31. S. Das, K. Dutta, A. Pramanik, Morphology control of ZnO with citrate: a time and concentration dependent mechanistic insight. Cryst. Eng. Comm. 15, 6349–6358 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

G. Suresh Kumar would like to express his sincere thanks to University Grant Commission, India for financial support through minor research project scheme [File No: 4-4/2015-16 (MRP/UGC SERO)]. The authors express their special thanks to STIC, Cochin, India for providing TEM and UV-DRS facilities for characterizing the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Suresh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duraimurugan, J., Kumar, G.S., Venkatesh, M. et al. Morphology and size controlled synthesis of zinc oxide nanostructures and their optical properties. J Mater Sci: Mater Electron 29, 9339–9346 (2018). https://doi.org/10.1007/s10854-018-8964-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8964-9

Navigation