Skip to main content
Log in

Microstrucutre and thermoelectric properties of rapidly prepared Sn1−xMnxTe alloys

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sn1−xMnxTe (x = 0, 0.09, 0.15, 0.20) bulk materials were prepared by melt spinning combined with spark plasma sintering process. Nanoscale grains were obtained, and the solid solubility of Mn was much enhanced by the ultrafast-cooling synthesis technique. The maximum of Seebeck coefficient and power factor are 242 µVK−1 and 19.97 µW cm−1K−2 at 873 K with the doping concentration of 15 at% Mn. A large amount of grain boundaries and doped atoms improve the scattering of heat-carrying phonons in a wide range of frequencies, and the scattering mechanisms are also explained by theoretical calculation. As a result, the minimum of lattice thermal conductivity is 0.66 µVK−1 at 873 K, the corresponding figure of merit is 1.26 for Sn0.85Mn0.15Te sample. This value is improved by 35% comparing with previously reported result. Our work indicates that melt spinning process is effective to develop SnTe related thermoelectric materials with excellent thermoelectric properties, which has the widespread commercial value and the prospects for development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L.E. Bell, Science 321, 1457–1461 (2008)

    Article  CAS  Google Scholar 

  2. H.Q. Liu, F.P. Wang, L. F, Y. Song, Z.H. Jiang, J. Mater. Sci.: Mater. Electron. 17, 525–528 (2006)

    CAS  Google Scholar 

  3. K. Biswas, J.Q. He, I.D. Blum, I.w. Chun, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, Nature 490, 1 (2012)

    Article  Google Scholar 

  4. L.D. Zhao, H.J. Wu, S.Q. Hao, C.I. Wu, X.Y. Zhou, K. Biswas, J.Q. He, T.P. Hogan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Energy Environ. Sci. 6, 3346–3355 (2013)

    Article  CAS  Google Scholar 

  5. R.D. Schmidt, E.D. Case, J.E. Ni, R.M. Trejo, E. Lara Curzio, R.J. Korkosz, M.G. Kanatzidis, J. Mater. Sci. 48, 8244–8258 (2013)

    Article  CAS  Google Scholar 

  6. P.B. Littlewood, B. Mihaila, R.K. Schulze, D.J. Safarik, J.E. Gubernatis, A. Bostwick, E. Rotenberg, C.P. Opeil, T. Durakiewicz, J.L. Smith, J.C. Lashley, Phys. Rev. Lett. 105, 086404 (2010)

    Article  CAS  Google Scholar 

  7. R. Al Rahal, A. Orabi, N.A. Mecholsky, J. Hwang, W. Kim, J. Rhyee, D. Wee, M. Fornari, Chem. Mater. 28, 376–384 (2015)

    Article  Google Scholar 

  8. D.J. Singh, Funct. Mater. Lett. 03, 223–226 (2010)

    Article  CAS  Google Scholar 

  9. S.M. Li, J.Q. Li, L. Yang, F.S. liu, W.Q. Ao, Y. Li, Mater. Des. 108, 54–59 (2016)

    Google Scholar 

  10. Q. Zhang, B. Liao, Y. Lan, K. Lukas, W. Liu, K. Esfarjani, C. Opeil, D. Broido, G. Chen, Z. Ren, Proc. Acad. Natl. Sci. USA 110, 13261–13266 (2013)

    Article  CAS  Google Scholar 

  11. G. Tan, L.D. Zhao, F. Shi, J.W. Doak, S.H. Lo, H. Sun, C. Wolverton, V.P. Dravid, C. Uher, M.G. Kanatzidis, J. Am. Chem. Soc. 136, 7006–7017 (2014)

    Article  CAS  Google Scholar 

  12. A. Banik, U.S. Shenoy, S. Anand, U.V. Waghmare, K. Biswas, Chem. Mater. 27, 581–587 (2015)

    Article  CAS  Google Scholar 

  13. G. Tan, F. Shi, S. Hao, H. Chi, T.P. Bailey, L.D. Zhao, C. Uher, C. Wolverton, V.P. Dravid, J. Am. Chem. Soc. 137, 11507–11516 (2015)

    Article  CAS  Google Scholar 

  14. G. Tan, F. Shi, J.W. Doak, H. Sun, L. Zhao, P. Wang, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Energy Environ. Sci. 8, 267–277 (2015)

    Article  CAS  Google Scholar 

  15. Y. Pei, L. Zheng, W. Li, S. Lin, Z. Chen, Y. Wang, X. Xu, H. Yu, Y. Chen, B. Ge, Adv. Electron. Mater. 2, 1600019 (2016)

    Article  Google Scholar 

  16. H. Wu, C. Chang, D. Feng, Y. Xiao, X. Zhang, Y. Pei, L. Zheng, D. Wu, S. Gong, Y. Chen, J. He, M.G. Kanatzidis, L. Zhao, Energy Environ. Sci. 8, 3298–3312 (2015)

    Article  CAS  Google Scholar 

  17. Y. Yu, D.S. He, S. Zhang, O. CojocaruMirédin, T. Schwarz, A. Stoffers, X. Wang, S. Zheng, B. Zhu, C. Scheu, D. Wu, J. He, M. Wuttig, Z. Huang, F. Zu, Nano Energy 37, 203–213 (2017)

    Article  CAS  Google Scholar 

  18. W. Xie, J. He, H.J. Kang, X. Tang, S. Zhu, M. Laver, S. Wang, J.R. Copley, C.M. Brown, Q. Zhang, T.M. Tritt, Nano Lett. 10, 3283–3289 (2010)

    Article  CAS  Google Scholar 

  19. S.H. Yang, S.N. Zhang, C.S. Li, Q.J. Feng, M. Liang, J. Mater. Sci.: Mater. Electron. 28, 15279–15283 (2017)

    CAS  Google Scholar 

  20. V.I. Tkatch, S.N. Denisenko, O.N. Beloshov, Acta Mater. 45, 2821–2826 (1997)

    Article  CAS  Google Scholar 

  21. Z. Li, Y. Chen, J. Li, H. Chen, L. Wang, S. Zheng, G. Lu, Nano Energy 28, 78–86 (2016)

    Article  CAS  Google Scholar 

  22. G. Tan, F. Shi, S. Hao, H. Chi, L.D. Zhao, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, J. Am. Chem. Soc. 137, 5100–5112 (2015)

    Article  CAS  Google Scholar 

  23. J. Callaway, Phys. Rev. 113, 1046–1051 (1959)

    Article  CAS  Google Scholar 

  24. J.Q. He, S.N. Girard, M.G. Kanatzidis, V.P. Dravid, Adv. Funct. Mater. 20, 764–772 (2010)

    Article  CAS  Google Scholar 

  25. S.H. Lo, J. He, K. Biswas, M.G. Kanatzidis, V.P. Dravid, Adv. Funct. Mater. 22, 5175–5184 (2012)

    Article  CAS  Google Scholar 

  26. D.T. Morelli, J.P. Heremans, G.A. Slack, Phys. Rev. B 66, 195304 (2002)

    Article  Google Scholar 

  27. W. Kim, S.L. Singer, A. Majumdar, J.M.O. Zide, D. Klenov, A.C. Cossard, S. Stemmer, Nano Lett. 8, 2097–2099 (2008)

    Article  CAS  Google Scholar 

  28. P.B. Pereira, I. Sergueev, S. Gorsse, J. Dadda, E. Muller, R.P. Heremann, Phys. Status Solidi B 250, 1300–1307 (2013)

    Article  Google Scholar 

  29. L. Pauling, J. Am. Chem. Soc. 69, 542–553 (1947)

    Article  CAS  Google Scholar 

  30. C. Toher, J.J. Plata, O. Levy, M. de Jong, M. Asta, M.B. Nardelli, S. Curtarolo, Phys. Rev. B 90, 174107 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Fund of the National Natural Science Foundation of China [Grant Number 51774239]; Young Talent fund of University Association for Science and Technology in Shaanxi, China [Grant Number 20160108].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuangming Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Li, S., Li, X. et al. Microstrucutre and thermoelectric properties of rapidly prepared Sn1−xMnxTe alloys. J Mater Sci: Mater Electron 29, 18949–18956 (2018). https://doi.org/10.1007/s10854-018-0018-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0018-9

Navigation