Skip to main content
Log in

PEDOT:PSS nano-gels for highly electrically conductive silver/epoxy composite adhesives

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, we report a methanol-facilitated approach to directly use aqueous Poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate) (PEDOT:PSS) in the silver/epoxy composites for preparation of highly electrically conductive adhesives (ECAs) and an investigation of the interaction between PEDOT:PSS nano-gels and silver microflakes. PEDOT:PSS nano-gel (18 < d < 30 nm) aqueous dispersion is immiscible with epoxy resin and difficult to incorporate into the conventional silver-filled ECAs. To overcome this challenge, we used methanol to facilitate the dispersion of PEDOT:PSS and silver microflake in epoxy resin. The synergetic interactions between PEDOT:PSS and silver and the effect of methanol were investigated using dynamic light scattering (DLS), atomic force microscopy, Kelvin probe force microscopy, and scanning electron microscope. When PEDOT:PSS was exposed to methanol, its morphology changed from coil to coil/linear structure; the contact potential difference between silver microflake and PEDOT:PSS increased from 9.47 to 22.56 mV, showing an increased conductivity between PEDOT:PSS and silver microflake. It was found that the introduction of a small amount of PEDOT:PSS (0.1 wt%) to the conventional ECA with 60 wt% silver microflake remarkably improved the electrical conductivity from 104 to 386 S/cm. A significantly high conductivity of 2526 S/cm was achieved by further increasing the PEDOT:PSS concentration to 1 wt%. The impact of PEDOT:PSS on the adhesive bonding strength towards copper substrate was also examined; the bonding strength slightly decreased when < 1 wt% PEDOT:PSS was used, but abruptly dropped when PEDOT:PSS content was further increased beyond 1 wt%. The incorporation of the optimal 1 wt% PEDOT:PSS into conventional ECAs with 60% silver microflake greatly increased the electrical conductivities by 25 times with limited impact on the shear strength. The results provide insights to the synergetic interplay of conductive polymer and metallic fillers, and might have profound technical implications on the development of advanced conductive composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. Yang, C.P. Wong, M.M.F. Yuen, J. Mater. Chem. C 1, 4052 (2013). doi:10.1039/c3tc00572k

    Article  Google Scholar 

  2. M.J. Yim, Y. Li, K.-s. Moon, K.W. Paik, C.P. Wong, J. Adhes. Sci. Technol. 22, 1593 (2008). doi:10.1163/156856108x320519

    Article  Google Scholar 

  3. H. Ma, J.C. Suhling, J. Mater. Sci. 44, 1141 (2009). doi:10.1007/s10853-008-3125-9

    Article  Google Scholar 

  4. I. Mir, D. Kumar, Int. J. Adhes. Adhes. 28, 362 (2008). doi:10.1016/j.ijadhadh.2007.10.004

    Article  Google Scholar 

  5. H. Jiang, K.-S. Moon, J. Lu, C. Wong, J. Electron. Mater. 34, 1432 (2005)

    Article  Google Scholar 

  6. B. Meschi Amoli, A. Hu, N.Y. Zhou, B. Zhao, J. Mater. Sci: Mater. Electron. 26: 4730 (2015). doi:10.1007/s10854-015-3016-1

    Google Scholar 

  7. Y. Rao, D. Lu, C.P. Wong, Int. J. Adhes. Adhes. 24, 449 (2004). doi:10.1016/j.ijadhadh.2003.12.003

    Article  Google Scholar 

  8. S. Xu, D.A. Dillard, J.G. Dillard, Int. J. Adhes. Adhes. 23, 235 (2003). doi:10.1016/s0143-7496(03)00027-7

    Article  Google Scholar 

  9. H. Jiang, K.-s. Moon, Y. Li, C. Wong, Chem. Mater. 18, 2969 (2006)

    Article  Google Scholar 

  10. Z.X. Zhang, X.Y. Chen, F. Xiao, J. Adhes. Sci. Technol. 25, 1465 (2012). doi:10.1163/016942410x549924

    Article  Google Scholar 

  11. E. Messina, N. Leone, A. Foti et al., ACS Appl. Mater. Interfaces 8, 23244 (2016). doi:10.1021/acsami.6b06145

    Article  Google Scholar 

  12. Z. Zhang, X. Chen, F. Xiao, J. Adhes. Sci. Technol. 25, 1465 (2011)

    Article  Google Scholar 

  13. B. Meschi Amoli, J. Trinidad, G. Rivers et al., Carbon 91, 188 (2015). doi:10.1016/j.carbon.2015.04.039

    Article  Google Scholar 

  14. Y. Xia, J. Ouyang, (2010) ACS Appl. Mater. Interfaces 2, 474

    Article  Google Scholar 

  15. X. Fan, B. Xu, S. Liu, C. Cui, J. Wang, F. Yan, ACS Appl. Mater. Interfaces 8, 14029 (2016). doi:10.1021/acsami.6b01389

    Article  Google Scholar 

  16. J. Hossain, Q. Liu, T. Miura et al., ACS Appl. Mater. Interfaces 8, 31926 (2016). doi:10.1021/acsami.6b10272

    Article  Google Scholar 

  17. S. Kee, N. Kim, B.S. Kim et al., Adv. Mater. 28, 8625 (2016). doi:10.1002/adma.201505473

    Article  Google Scholar 

  18. I. Lee, G.W. Kim, M. Yang, T.S. Kim, ACS Appl. Mater. Interfaces 8, 302 (2016). doi:10.1021/acsami.5b08753

    Article  Google Scholar 

  19. R. Balint, N.J. Cassidy, S.H. Cartmell, Acta Biomater. 10, 2341 (2014). doi:10.1016/j.actbio.2014.02.015

    Article  Google Scholar 

  20. F. Louwet, L. Groenendaal, J. Dhaen et al., Synth. Met. 135–136, 115 (2003). doi:10.1016/s0379-6779(02)00518-0

    Article  Google Scholar 

  21. S. Kirchmeyer, K. Reuter, J. Mater. Chem. 15, 2077 (2005). doi:10.1039/b417803n

    Article  Google Scholar 

  22. U. Lang, E. Muller, N. Naujoks, J. Dual, Adv. Funct. Mater. 19, 1215 (2009). doi:10.1002/adfm.200801258

    Article  Google Scholar 

  23. Y. Xia, J. Ouyang, J. Mater. Chem. 21, 4927 (2011)

    Article  Google Scholar 

  24. N. Kim, S. Kee, S.H. Lee et al., Adv. Mater. 26, 2268 (2014)

    Article  Google Scholar 

  25. J. Wang, Z. Zheng, H. Li, W. Huck, H. Sirringhaus, Nat. Mater. 3, 171 (2004)

    Article  Google Scholar 

  26. M. Singh, H.M. Haverinen, P. Dhagat, G.E. Jabbour, Adv. Mater. 22, 673 (2010)

    Article  Google Scholar 

  27. K. Ikushima, S. John, A. Ono, S. Nagamitsu, Synth. Met. 160, 1877 (2010)

    Article  Google Scholar 

  28. H. Yan, T. Jo, H. Okuzaki, Polym. J. 41, 1028 (2009). doi:10.1295/polymj.PJ2009143

    Article  Google Scholar 

  29. J. Ouyang, C.W. Chu, F.C. Chen, Q. Xu, Y. Yang, Adv. Funct. Mater. 15, 203 (2005)

    Article  Google Scholar 

  30. D. Alemu, H.-Y. Wei, K.-C. Ho, C.-W. Chu, Energy Environ. Sci. 5, 9662 (2012). doi:10.1039/c2ee22595f

    Article  Google Scholar 

  31. C. Badre, L. Marquant, A.M. Alsayed, L.A. Hough, Adv. Funct. Mater. 22, 2723 (2012). doi:10.1002/adfm.201200225

    Article  Google Scholar 

  32. Z. Yu, Y. Xia, D. Du, J. Ouyang, ACS Appl. Mater. Interfaces 8, 11629 (2016). doi:10.1021/acsami.6b00317

    Article  Google Scholar 

  33. N. Kim, S. Kee, S.H. Lee et al., Adv. Mater. 26, 2268 (2014). doi:10.1002/adma.201304611

    Article  Google Scholar 

  34. J. Hou, G. Zhu, J. Xu, H. Liu, J. Mater. Sci. Technol. 29, 678 (2013)

    Article  Google Scholar 

  35. E. Armelin, Á Meneguzzi, C.A. Ferreira, C. Alemán, Surf. Coat. Technol. 203, 3763 (2009)

    Article  Google Scholar 

  36. T.-C. Chueh, C.-H. Hu, S.-C. Yen, J. Electrochem. Soc. 162, D56 (2015)

    Article  Google Scholar 

  37. A. Binley, S. Henry-Poulter, B. Shaw, Water Resour. Res. 32, 763 (1996). doi:10.1029/95wr02995

    Article  Google Scholar 

  38. B. Meschi Amoli, J. Trinidad, A. Hu, Y.N. Zhou, B. Zhao, J. Mater. Sci: Mater. Electron. 26, 590 (2014). doi:10.1007/s10854-014-2440-y

    Google Scholar 

  39. U. Lang, E. Müller, N. Naujoks, J. Dual, Adv. Funct. Mater. 19, 1215 (2009)

    Article  Google Scholar 

  40. L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, J.R. Reynolds, Adv. Mater. 12, 481 (2000)

    Article  Google Scholar 

  41. J. Lowell, A. Rose-Innes, Adv. Phys. 29, 947 (1980)

    Article  Google Scholar 

  42. G. Rivers, A. Rogalsky, P. Lee-Sullivan, B. Zhao, J. Therm. Anal. Calorim. 119: 797 (2014). doi:10.1007/s10973-013-3613-2

    Article  Google Scholar 

  43. A.J. Lovinger, J. Adhes. 10, 1 (1979). doi:10.1080/00218467908544607

    Article  Google Scholar 

  44. E. Sancaktar, L. Bai, Polymers 3, 427 (2011). doi:10.3390/polym3010427

    Article  Google Scholar 

  45. A. Mikrajuddin, F. Shi, S. Chungpaiboonpatana, K. Okuyama, C. Davidson, J. Adams, Mater. Sci. Semicond. Process. 2, 309 (1999)

    Article  Google Scholar 

  46. S.R. Broadbent, J.M. Hammersley, Mathematical Proceedings of the Cambridge Philosophical Society (Cambridge University Press, Cambridge, 1957)

    Google Scholar 

  47. W. Zhang, Y. Zhou, K. Feng, J. Trinidad, A. Yu, B. Zhao, Adv. Electron. Mater. 1, 1 (2015). doi:10.1002/aelm.201500205

    Google Scholar 

  48. J.B. Enns, J.K. Gillham, J. Appl. Polym. Sci. 28, 2831 (1983)

    Article  Google Scholar 

  49. P. Nogueira, C. Ramirez, A. Torres et al., J. Appl. Polym. Sci. 80, 71 (2001)

    Article  Google Scholar 

  50. F. Hussain, M. Hojjati, M. Okamoto, R.E. Gorga, J. Compos. Mater. 40, 1511 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to thank the Refined Manufacturing Acceleration Process Network (ReMAP), Natural Sciences and Engineering Research Council of Canada (NSERC), as well as the Ontario Center of Excellence (OCE) for their financial support on this project. Part of this work was presented at the International Conference on Soldering and Reliability, Toronto, Canada, 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boxin Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Si, P., Trinidad, J., Chen, L. et al. PEDOT:PSS nano-gels for highly electrically conductive silver/epoxy composite adhesives. J Mater Sci: Mater Electron 29, 1837–1846 (2018). https://doi.org/10.1007/s10854-017-8093-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8093-x

Navigation