Skip to main content
Log in

Study on the electrical properties of ZnSe/Si heterojunction diode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ZnSe thin film is e-beam evaporated on monocrystalline p-Si to fabricate n-ZnSe/p-Si heterojunction. The electrical properties were investigated by current–voltage (I–V), capacitance–voltage (C–V) and conductance–voltage (G/w–V) measurements. The forward bias I–V characteristics were analyzed in the temperature range of 220–360 K. The fabricated diode structure exhibited rectifying characteristics with a two order rectification ratio. The current transport in the junction was modeled by the modification of thermionic emission (TE) in which the observed anomaly was related to the interfacial disorder at the junction. From this analysis, the zero-bias barrier height and ideality factor at room temperature condition were determined as 0.775 and 3.195 eV, respectively. The TE anomaly was also evaluated by considering the fluctuations due to the barrier inhomogeneity and the assumption of Gaussian distribution in barrier height. Therefore, the forward bias I–V results were used to determine the density of interface states. The frequency dependence of C–V and G/w–V characteristics of the n-ZnSe/p-Si heterostructure were studied by taking into account of the effect of the series resistance and interface states at room temperature. According to the high-low frequency capacitance and Hill-Coleman methods, density of interface states was calculated and these experimental values were found in decreasing behavior with increasing frequency. The voltage and frequency dependence of series resistance values obtained from C–V and G/w–V measurements were also related to the insulator layer and the distribution density of interface states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A.M. Glass, Special Consideration for Group II–VI Compound Semicoductors, in Process Challenges in Compound Semiconductors, (National Academy Press, Washington D.C., 1988)

    Google Scholar 

  2. J. Wang, M. Isshiki, II-VI Wide-Bandgap, Semiconductors: growth and properties, in Springer Handbook of Electronic and Photonic Materials, Springer, Berlin, 2007)

    Google Scholar 

  3. E.R. Shaaban, J. Alloy. Compd. 556, 274 (2013)

    Article  Google Scholar 

  4. H.H. Güllü, E. Coskun, M. Parlak, Phys. Stat. Sol. C 12, 1224 (2015)

    Google Scholar 

  5. E. Bacaksiz, S. Aksu, I. Polat, S. Yilmaz, M. Altunbas, J. Alloy. Compd. 487, 280 (2009)

    Article  Google Scholar 

  6. K.G. Rao, K.V. Bangera, G.K. Shivakumar, Mat. Sci. Sem. Process. 16, 269 (2013)

    Article  Google Scholar 

  7. G. Riveros, H. Gomez, R. Henriquez, R. Schrebler, R.E. Marotti, E.A. Dalchiele, Sol. Energ. Mat. Sol. Cells. 70, 255 (2001)

    Article  Google Scholar 

  8. A. Othonos, E. Lioudakis, D. Tsokkou, U. Philipose, H.E. Ruda, J. Alloy. Compd. 483, 600 (2009)

    Article  Google Scholar 

  9. K.F. Abd El-Rahman, A.A.A. Darwish b,n, E.A.A. El-Shazly, Mater. Sci. Semicond. Process. 25, 123 (2014)

    Article  Google Scholar 

  10. K. Qiu, D. Qiu, L. Cai, S. Li, W. Wu, Z. Liang, H. Shen, Mater. Lett. 198, 23 (2017)

    Article  Google Scholar 

  11. S. Darwish, A.S. Riad, H.S. Soliman, Semicond. Sci. Technol. 11, 96 (1996)

    Article  Google Scholar 

  12. K. Wasa, S. Hayakawa, Jpn. J. Appl. Phys. 12, 408 (1973)

    Article  Google Scholar 

  13. S. Venkatachalam, D. Mangalaraj, Sa..K. Narayandass, S. Velumani, P. Schabes-Retchkiman, J.A. Ascencio, Mater. Chem. Phys. 103, 305 (2007)

    Article  Google Scholar 

  14. X. Zhang, X. Zhang, L. Wang, Y. Wu, Y. Wang, P. Gao, Y. Han, J. Jie, Nanotechnology 24, 395201 (2013)

    Article  Google Scholar 

  15. Y. Zeng, H. Xing, Y. Fang, Y. Huang, A. Lu, X. Chen, Materials 7, 7276 (2014)

    Article  Google Scholar 

  16. A. Ayeshamariam, M. Kashif, S. Muthuraja, S. Jagadeswari, D. Saravanankumar, N.M.I Alhaji, A.Uduman Mohideen, M. Bouodina, M. Jayachandran, IJETAE, 4, 2250 (2014)

    Google Scholar 

  17. S.M. Sze, K.N. Kwok, Physics of Semiconductor Devices, 3rd edn. (Wiley, USA, 2007)

    Google Scholar 

  18. Ş. Altındal, H. Kanbur, D.E. Yıldız, M. Parlak, Appl. Surf. Sci. 253(11), 5056 (2007)

    Article  Google Scholar 

  19. M. Kaleli, M. Parlak, C. Ercelebi, Semicond. Sci. Technol. 26, 105013 (2011)

    Article  Google Scholar 

  20. A. Ahaitouf, Thin Solid Films 522, 345 (2012)

    Article  Google Scholar 

  21. C.R. Crowell, Solid State Electron. 8, 395 (1965)

    Article  Google Scholar 

  22. Ş. Karatas, M. Çakar, A. Türüt, Mater. Sci. Process. 28, 135 (2014)

    Article  Google Scholar 

  23. H. Altuntaş, Microelectron. Reliab. 49, 904 (2009)

    Article  Google Scholar 

  24. A. Tataroğlu, Phys. Scr. 88, 015801 (2013)

    Article  Google Scholar 

  25. V. Janardhanam, H. Lee, K. Shim, H. Hong, S. Lee, K. Ahn, C. Choi, J. Alloy. Compd. 504, 146 (2010)

    Article  Google Scholar 

  26. H. Özerli, İ. Karteri, Ş. Karataş, Ş. Altindal, Mater. Res. Bull. 53, 211 (2014)

    Article  Google Scholar 

  27. R.T. Tung, Phys. Rev. B 45, 13509 (1992)

    Article  Google Scholar 

  28. J.P. Sullivan, R.T. Tung, M.R. Pinto, W.R. Graham, J. Appl. Phys. 70, 7403 (1991)

    Article  Google Scholar 

  29. R.T. Tung, Electron transport at metal-semiconductor interfaces: General theory. Phys. Rev. B 45, 16509 (1992)

    Article  Google Scholar 

  30. I.S. Yahia, M. Fadel, G.B. Sakr, F. Yakuphanoglu, S.S. Shenouda, W.A. Farooq, J. Alloy Compd. 509, 4414 (2011)

    Article  Google Scholar 

  31. K.S. Karimov, M.M. Ahmed, S.A. Moiz, M.I. Fedorov, Sol. Energy Mater. Sol. Cells. 87, 61 (2005)

    Article  Google Scholar 

  32. S. Chand, J. Kumar, Semicond. Sci. Technol. 10, 1680 (1995)

    Article  Google Scholar 

  33. R.F. Schmitsdorf, T.U. Kampen, W. Mönch, J. Vac. Sci. Technol. B 15, 1221 (1997)

    Article  Google Scholar 

  34. R.T. Tung, Appl. Phys. Lett. 58, 2821 (1991)

    Article  Google Scholar 

  35. W. Mönch, Europhys. Lett. 27, 479 (1994)

    Article  Google Scholar 

  36. Ş. Aydoğan, M. Sağlam, A. Türüt, Appl. Surf. Sci. 250(1), 43 (2005)

    Article  Google Scholar 

  37. D.E. Yıldız, Ş. Altındal, H. Kanbur, J. Appl. Phys. 103, 124502 (2008)

    Article  Google Scholar 

  38. J.H. Werner, H.H. Güttler, Phys. Scr. T39, 258 (1991)

  39. M. Özer, D.E. Yıldız, Ş. Altındal, M.M. Bülbül, Solid. State. Electron. 51, 941 (2007)

    Article  Google Scholar 

  40. W. Mönch, Electronic Properties of Semiconductor Interfaces. (Springer, Berlin, 2004)

    Book  Google Scholar 

  41. S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986)

    Article  Google Scholar 

  42. E.H. Nicollian, A. Goetzberger, Bell Syst. Tech. J. 46, 1055 (1967)

    Article  Google Scholar 

  43. H.G. Çetinkaya, Ş. Altındal, I. Orak, I. Uslu, J. Mater. Sci. 28, 7905 (2017)

    Google Scholar 

  44. J. Szatkowski, K. Sierański, Solid. State. Electron. 35, 1013 (1992)

    Article  Google Scholar 

  45. G. Ersöz, İ. Yucedağ, Y. AzizianKalandaragh, İ. Orak, Ş. Altıdal, IEEE Trans. Electron. Dev. 63, 2948 (2016)

    Article  Google Scholar 

  46. K.K. Hung, Y.C. Cheng, J. Appl. Phys. 62, 4204 (1987)

    Article  Google Scholar 

  47. W.A. Hill, C.C. Coleman, Solid. State. Electron. 23, 987 (1980)

    Article  Google Scholar 

  48. S. Kar, W.E. Dahlke, Solid. State. Electron. 15, 221 (1972)

    Article  Google Scholar 

  49. S. Demirezen, S. Altindal, S. Özelik, E. Özbay, Microelectron. Reliab. 51, 2153 (2011)

    Article  Google Scholar 

  50. S. Demirezen, I. Orak, Y. Azizian-Kalandaragh, Ş. Altındal, J. Mater. Sci. (2017). doi: 10.1007/s10854-017-7128-7

    Google Scholar 

  51. S. Zeyrek, Ş. Altındal, H. Yüzer, M.M. Bülbül, Appl. Surf. Sci. 252, 2999 (2006)

    Article  Google Scholar 

  52. E.E. Tanrıkulu, S. Demirezen, Ş. Altındal, I. Uslu, J. Mater. Sci. 28, 8844 (2017)

    Google Scholar 

  53. H.C. Card, E.H. Rhoderick, J. Phys. D 4, 1589 (1971)

    Article  Google Scholar 

  54. B. Akkal, Z. Benamara, A. Boudissa, N. Bachir Bouiadjra, M. Amrani, L. Bideux, B. Gruzza, Mater. Sci. Eng. B 55, 162 (1998)

    Article  Google Scholar 

  55. E.H. Nicollian, J.R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology. (Wiley, New York, 2002)

    Google Scholar 

  56. Ş. Altındal, H. Uslu, J. Appl. Phys. 109, 074503 (2011)

    Article  Google Scholar 

  57. A.A.M. Farag, B. Gunduz, F. Yakuphanoglu, W.A. Farooq, Synth. Met. 160, 2559 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. E. Yildiz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Güllü, H.H., Bayraklı, Ö., Yildiz, D.E. et al. Study on the electrical properties of ZnSe/Si heterojunction diode. J Mater Sci: Mater Electron 28, 17806–17815 (2017). https://doi.org/10.1007/s10854-017-7721-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7721-9

Navigation