Skip to main content
Log in

Effect of thickness on the physical properties and gas sensing application: anatase titanium dioxide nanofilms by automated nebulizer spray pyrolysis (ANSP)

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, effects of thickness towards volume proportion of TiO2 nanofilms were deposited on a glass substrate at 500 °C by using ANSP method. The optical profilometer shows the coated films thicknesses were increased (186, 234, 311, 397 and 433 nm) by increasing the volume proportion. Based on the thickness, The XRD reveals a polycrystalline tetragonal anatase phase with decreased particle sizes. The topographical study (AFM) of 3D surface view shows the incremented average roughness (Ra) values. The surface morphological variations with decremented particle size were examined by FESEM. The maximum transmittance ~78.5% (λ = 612.8 nm) is obtained to 186 nm thickness and further increment of thickness shows the decremented value of transmittance with an absorption edge shifted from lower to higher wavelength (blue shift) and the calculated band gap value Eg = 3.65–3.26 eV. The gas sensing performances of films was studied by using a various sensing parameters, obviously C2H6O gas shows highest response (Sm = 13% as 397 nm) at 300 °C for 150 ppm gas concentration against other gasses (NH3, CH4O, C3H8O and C3H6O).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. Mardare, N. Iftimie, D. Luca, J. Non-Cryst. Solids 354, 4396–4400 (2008)

    Article  Google Scholar 

  2. I. Vaiciulis, M. Girtan, et al., Proc. Rom. Acad. Seri. A 13(4), 335–342 (2012)

    Google Scholar 

  3. H. Ichiura, T. Kitaoka, H. Tanaka, Chemosphere 50(1), 79–83 (2003)

    Article  Google Scholar 

  4. M.O. Abou-Helal, W.T. Seeber, Appl. Surf. Sci. 195, 53 (2002)

    Article  Google Scholar 

  5. N.E. Stankova, I.G. Dimitrov, et al., Appl. Surf. Sci. 254, 1268 (2007)

    Article  Google Scholar 

  6. I. Poulios, P. Spathis, et al., J. Environ. Sci. Health. A, 34(7), 1455–1471 (1999)

    Article  Google Scholar 

  7. G.P. Burns, J. Appl. Phys. 65, 2095 (1989)

    Article  Google Scholar 

  8. H.G. Choi, S. Yong, D.K. Kim, Kor. J. Mater. Res. 22(7), 352–357 (2012)

    Article  Google Scholar 

  9. V. Gopala Krishnan, P. Elango, et al., Optik-Int. Light Electron Optics 127, 11102–11110 (2016)

    Article  Google Scholar 

  10. H. Tang, K. Prasad, et al., Sens. Actuators B Chem. 26–27(1–3), 71–75 (1995)

    Article  Google Scholar 

  11. K.L. Choy, B. Su, J. Mater. Sci. Lett. 18, 943–945 (1999)

    Article  Google Scholar 

  12. M. Bockmeyer, B. Herbig, et al., Thin Solid Film 517, 1596–1600 (2009)

    Article  Google Scholar 

  13. N. Rausch, E.P. Burte, J. Electrochem. Soc. 140(1), 145–149 (1993)

    Article  Google Scholar 

  14. J-C Orlianges, et al., J. Appl. Surf. Sci. 263, 111–114 (2012)

    Article  Google Scholar 

  15. M. Bouaicha, N. Ghrairi, Nanoscale Res. Lett. 7, 357 (2012)

    Article  Google Scholar 

  16. A.I. Martinez, et al., J. Phys. 16(22), S2335–S2344 (2004)

    Google Scholar 

  17. R. Mariappan, V. Ponnuswamy, et al., Mater. Sci. Semicond. Process. 16, 1328–1335 (2013)

    Article  Google Scholar 

  18. L. Wei, O. Caiwen, P. Huang, et al., Int. J. Electrochem. Sci. 8, 8213–8226 (2013)

    Google Scholar 

  19. I. Oja, A. Mere, M. Krunks, et al., Thin Solid Film 515, 674–677 (2006)

    Article  Google Scholar 

  20. F.D. Duminica, F. Maury, et al., Thin Solid Film 515, 7732–7739 (2007)

    Article  Google Scholar 

  21. H. Zabova, V. Cirkva, J. Chem. Technol. Biotechnol. 84, 1624–1630 (2009)

    Article  Google Scholar 

  22. W. Niu, G. Wang, et al., Int. J. Electrochem. Sci. 10, 2613–2620 (2015)

    Google Scholar 

  23. B.D. Cullity, Elements of X-ray Diffraction, 2nd edn. (Addison-Wesley Publishing Company Inc, Toronto, 1978)

  24. S.K. Joung, T. Amemiya, et al., Chem. Eur. J. 12, 5526–5534 (2006)

    Article  Google Scholar 

  25. M.A. Martynez, C. Guillen, J. Herrero, J. Appl. Surf. Sci. 136, 8 (1998)

    Article  Google Scholar 

  26. D. Mardare, M. Tasca, M. Delibas, et al, J. Appl. Surf. Sci. 156, 200–206 (2000)

    Article  Google Scholar 

  27. N.M. Ganesan, T.S. Senthil, et al., Int. J. Chem. Tech. Res. 6(5), 3078–3082 (2014)

    Google Scholar 

  28. K.Y. Rajpure, C.D. Lokhande, et al., Mater. Res. Bull. 34, 1079–1087 (1999)

    Article  Google Scholar 

  29. A.A. Haidrya, J. Puskelova, et al., Appl. Surf. Sci. 259, 270–275 (2012)

    Article  Google Scholar 

  30. C.H. Han, D.W. Hong, et al., Sens Actuators B Chem. 128, 320–325 (2007)

    Article  Google Scholar 

  31. L.A. Patil, D.N. Suryawanshi, et al., Bull. Mater. Sci. 37(3), 425–432 (2014)

    Article  Google Scholar 

  32. C. Garzella, E. Comini, et al., Sens Actuators B Chem. 68, 189–196 (2000)

    Article  Google Scholar 

  33. P. Shailesh, C. Manik, et al., J. Sensor Technol. 1, 9–16 (2011)

    Article  Google Scholar 

  34. M.R. Vaezi, S.K. Sadrnezhaad, Mater. Sci. Eng. B 140, 73–80 (2007)

    Article  Google Scholar 

  35. H. Windichamann, P. Mark, J. Electrochem. Soc. 126(4), 627–633 (1979)

    Article  Google Scholar 

  36. J. Mizsei, Sens Actuators B Chem. 23, 173–176 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors (V. Gopala Krishnan) gratefully acknowledges to Dr. T. Shripathi, Dr. U. P. Deshpande and Er. Mohan Gangrade from the UGC—DAE CSR, Indore Centre, Khandwa Road, India for their scientific advice and for providing the necessary laboratory facilities such XPS and AFM measurements for carry out this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Elango.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnan, V.G., Purushothaman, A. & Elango, P. Effect of thickness on the physical properties and gas sensing application: anatase titanium dioxide nanofilms by automated nebulizer spray pyrolysis (ANSP). J Mater Sci: Mater Electron 28, 11473–11481 (2017). https://doi.org/10.1007/s10854-017-6943-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6943-1

Keywords

Navigation