Skip to main content
Log in

The synthesis of highly oriented brookite nanosheets using graphene oxide as a sacrificing template

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, brookite nanosheets with the preferential growth plane of (211) were synthesized using graphene oxide as sacrificing template. This experiment has been performed by a modified hydrothermal method at 100 °C at the presence of NaOH near saturated solution. Measurements were performed by means of X-ray diffraction, energy dispersive X-ray analysis, scanning electron microscopy and UV–Visible absorption spectroscopy. The results showed that brookite phase of titanium oxide has been formed in low temperatures on the expense of conversion of graphene oxide to Na2CO3 phase that during its growth, graphene oxide transforms into Na2CO3 phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.J. Lopez-Munoz, A. Revilla, G. Alcalde, brookite TiO2-based materials: synthesis and photocatalytic performance in oxidation of methyl orange and As(III) in aqueous suspensions. Catal. Today 240, 138–145 (2015)

    Article  Google Scholar 

  2. A. Di Paola, M. Bellardita, L. Palmisano, brookite, the least known TiO2 photocatalyst. Catalysts 3(1), 36–73 (2013)

    Article  Google Scholar 

  3. K. Katsumata, Y. Ohno, K. Tomita, T. Taniguchi, N. Mastushita, K. Okada, Synthesis of amphiphilic brookite nanoparticles with high photocatalytic performance for wide range of application. Appl. Mater. Interface 4, 4846–4852 (2012)

    Article  Google Scholar 

  4. Y. Liao, W. Que, Q. Jia, Y. He, J. Zhang, P. Zhong, Controllable synthesis of brookite/anatase/rutile TiO2 and single-crystalline rutile nanorods array. J. Mater. Chem. 22, 7937–7944 (2012)

    Article  Google Scholar 

  5. D.A. Hanaor, C.C. Sorrell, Review of the anatase to rutile phase transformation. J. Mater. Sci. 46, 855–874 (2011)

    Article  Google Scholar 

  6. M. Anderson, L. Osterlund, S. Ljungstrom, A. Palmqvist, Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol. J. Phys. Chem. B 106, 10674–10679 (2002)

    Article  Google Scholar 

  7. J. Li, Y. Chen, Y. Wang, Z. Yan, D. Duan, J. Wang, Synthesis and photocatalysis of mesoporous titania templated by natural rubber latex. RSC Adv. 5, 21480–21486 (2015)

    Article  Google Scholar 

  8. Z.Q. Tan, K. Sato, S. Takami, C. Numako, M. Umetsu, K. Soga, M. Nakayama, R. Saski, T. Tanaka, C. Ogino, A. Kondo, K. Yamamoto, T. Hashishin, S. Ohara, Particle size for photocatalytic activity of anatase TiO2 nanosheets with highly exposed {001} facets. RSC Adv. 3, 19268–19271 (2013)

    Article  Google Scholar 

  9. H. Lin, L. Li, M. Zhao, X. Huang, X. Chen, G. Li, R. Yu, Synthesis of high-quality brookite TiO2 single-crystalline nanosheets with specific facets exposed: tuning catalysts from inert to highly reactive. J. Am. Chem. Soc. 134(20), 8328–8331 (2012)

    Article  Google Scholar 

  10. G. Jiang, Z. lin, C. Chen, L. Zhu, Q. Change, N. Wang, W. Wang, W. Wei, H. Tang, TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants. Carbon 49, 2693–2701 (2011)

    Article  Google Scholar 

  11. Y. Gao, X. Pu, D. Zhang, G. Ding, X. Shao, J. Ma, Combustion synthesis of graphene oxide–TiO2 hybrid materials for photodegradation of methyl orange. Carbon 50(11), 4093–4101 (2012)

    Article  Google Scholar 

  12. Y. Liang, H. Wang, H. S. Casalongue, Z. Chen, H. Dai, TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res. 3 701–705 (2010)

    Article  Google Scholar 

  13. F. Akbar, M. Kolahdouz, Sh.. Larimian, B. Radfar, H.H. Radamson, Graphene synthesis, characterization and its applications in nanophotonics, nanoelectronics, and nanosensing. J. Mater. Sci. 26(7), 4347–4379 (2015)

    Google Scholar 

  14. M.I.A. Umar, C.C. Yap, R. Awang, M.H.H. Jumali, M.M. Salleh, M. Yahaya, Characterization of multilayer graphene prepared from short-time processed graphite oxide flake. J. Mater. Sci. 24(4), 1282–1286 (2013)

    Google Scholar 

  15. W.S. Wang, D.H. Wang, W.G. Qu, L.Q. Lu, A.W. Xu, Large ultrathin anatase TiO2 nanosheets with exposed {001} facets on graphene for enhanced visible light photocatalytic activity. J. Phys. Chem. C 116, 19893–19901 (2012)

    Article  Google Scholar 

  16. Y. Shen, J. Wan, Z. Hu, Z. Peng, B. Wang, H. Wang, A alkalescent route for synthesis of titanate nanosheets modified with reduced graphene oxide for enhanced photocatalytic activity. J. Mater. Sci. (2017). doi:10.1007/s10854-017-6501-x

  17. V. Panwar, A. Chattree, K. Pal, A new facile route for synthesizing of grapheneoxide using mixture of sulfuric–nitric–phosphoric acids as intercalating agent. Physica E 73, 235–241 (2015)

    Article  Google Scholar 

  18. M. Karimipour, S. Mashhoun, M. Mollaei, M. Molaei, N. Taghavinia, A simple low pressure method for the synthesis of TiO2 nanotubes and nanofibers and their application in DSSCs. Electron. Mater. Lett. 11(4), 625–632 (2015)

    Article  Google Scholar 

  19. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Titania nanotubes prepared by chemical processing. Adv. Mater. 11, 1307–1311 (1999)

    Article  Google Scholar 

  20. S. Abdolhosseinzadeh, H. Asgharzadeh, H.S. kim, Fast and fully-scalable synthesis of reduced graphene oxide. Sci. Rep. 5, 10160 (2015)

    Article  Google Scholar 

  21. K.H. Leong, P. Monash, S. Ibrahimi, P. Saravanan, Solar photocatalytic activity of anatase TiO2 nanocrystal synthesized by non-hydrolitic sol–gel method. Sol. Energy 101, 321–332 (2014)

    Article  Google Scholar 

  22. C.P. Sajan, S. Wageh, A.A. Al-Ghamdi, J. Yu, S. Cao, TiO2 nanosheets with exposed {001} facets for photocatalytic application. Nano Res. 9(1), 3–27 (2015)

    Article  Google Scholar 

  23. T. Shibata, N. Sakai, K. Fukuda, Y. Ebina, T. Sasaki, Photocatalytic properties of titania nanostructured films fabricated from titania nanosheets. Phys. Chem. 9, 2413–2420 (2007)

    Google Scholar 

  24. D. Lee, J. Seo, X. Zhu, J.M. Cole, H. Su, Magnetism in graphene oxide induced by epoxy groups. Appl. Phys. Lett. 106(17), 172402 (2015)

    Article  Google Scholar 

  25. M. Das, J. Datta, A. Dey, R. Jana, A. Layek, S. Middya, P.P. Ray, One step hydrothermal synthesis of a rGO–TiO2 nanocomposite and its application on a Schottky diode: improvement in device performance and transport properties. RSC Adv. 5, 101582–101592 (2015)

    Article  Google Scholar 

  26. J. Shen, B. Yan, M. Shi, H. Ma, N. Li, M. Ye, One step hydrothermal synthesis of TiO2-reduced graphene oxide sheets. J. Mater. Chem. 21, 3415–3421 (2011)

    Article  Google Scholar 

  27. T. Kasuga, Formation of titanium oxide nanotubes using chemical treatments and their characteristic properties. Thin Sol. Film 496, 141–145 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Karimipour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimipour, M., Sanjari, M. & Molaei, M. The synthesis of highly oriented brookite nanosheets using graphene oxide as a sacrificing template. J Mater Sci: Mater Electron 28, 9410–9415 (2017). https://doi.org/10.1007/s10854-017-6682-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6682-3

Keywords

Navigation