Skip to main content

Advertisement

Log in

Scalable synthesis of TiO2 crystallites embedded in bread-derived carbon matrix with enhanced lithium storage performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

TiO2/carbon (C/TiO2) composites have been synthesized via an in-situ pyrolysis method using bread as carbon source and investigated as anodes for lithium-ion batteries. As a cheap and common staple food with a sponge-like structure, bread contains a certain amount of moisture, enabling the hydrolysis of tetrabutyl orthotitanate. It is characterized that TiO2 nanocrystallites are embedded in bread-derived carbon matrix, and their synergetic effect on improving electrochemical properties is demonstrated as well. Partially surface lithium storage of ultrasmall TiO2 particles is credited to the unique embedment structure. Meanwhile, the carbon species are of importance in enhancing reversible capacities and accelerating interfacial charge transfer. It delivers a reversible capacity of 231 mAh g−1 at a specific current of 100 mA g−1 after 200 cycles for the resultant C/TiO2 composite with 38.8 wt.% carbon. This work presents a facile strategy toward scalable and eco-friendly preparation of metal oxides compositing with carbonaceous materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Goriparti, E. Miele, F.D. Angelis, E.D. Fabrizio, R.P. Zaccaria, C. Capiglia, J. Power Sources 257, 421–443 (2014)

    Article  Google Scholar 

  2. P. Roy, S.K. Srivastava, J. Mater. Chem. A 3, 2454–2484 (2015)

    Article  Google Scholar 

  3. B. Zhao, R. Ran, M.L. Liu, Z.P. Shao, Mater. Sci. Eng. R 98, 1–71 (2015)

    Article  Google Scholar 

  4. J.J. Huang, Z.Y. Jiang, Electrochim. Acta 53, 7756–7759 (2008)

    Article  Google Scholar 

  5. T. Ogihara, T. Kodera, Materials 6, 2285–2294 (2013)

    Article  Google Scholar 

  6. A.A. Kashale, K.A. Ghule, K.P. Gattu, V.H. Ingole, S.S. Dhanayat, R. Sharma, Y.C. Ling, J.Y. Chang, M.M. Vadiyar, A.V. Ghule, J. Mater. Sci. Mater. Electron. 28, 1472–1479 (2017)

    Article  Google Scholar 

  7. H.B. Geng, X.Q. Cao, Y. Zhang, K.M. Geng, G.L. Qu, M.H. Tang, J.W. Zheng, Y.G. Yang, H.W. Gu, J. Power Sources 294, 465–472 (2015)

    Article  Google Scholar 

  8. T. Xia, W. Zhang, Z.H. Wang, Y.L. Zhang, X.Y. Song, J. Murowchick, V. Battaglia, G. Liu, X.B. Chen, Nano Energy 6, 109–118 (2014)

    Article  Google Scholar 

  9. G.N. Zhu, Y.G. Wang, Y.Y. Xia, Energy Environ. Sci. 5, 6652–6667 (2012)

    Article  Google Scholar 

  10. V. Aravindan, Y.S. Lee, R. Yazami, S. Madhavi, Mater. Today 18, 345–351 (2015)

    Article  Google Scholar 

  11. T. Songa, U. Paik, J. Mater. Chem. A 4, 14–31 (2016)

    Article  Google Scholar 

  12. X. Su, Q.L. Wu, X. Zhan, J. Wu, S.Y. Wei, Z.H. Guo, J. Mater. Sci 47, 2519–2534 (2012)

    Article  Google Scholar 

  13. A. Lamberti, N. Garino, A. Sacco, S. Bianco, A. Chiodoni, C. Gerbaldi, Electrochim. Acta 151, 222–229 (2015)

    Article  Google Scholar 

  14. H. Liu, W. Li, D.K. Shen, D.Y. Zhao, G.X. Wang, J. Am. Chem. Soc. 137, 13161–13166 (2015)

    Article  Google Scholar 

  15. Y. Chen, X.Q. Ma, X.L. Cui, Z.Y. Jiang, J. Power Sources 302, 233–239 (2016)

    Article  Google Scholar 

  16. J.H. Kong, Y.F. Wei, C.Y. Zhao, M.Y. Toh, W.A. Yee, D. Zhou, S.L. Phua, Y.L. Dong, X.H. Lu, Nanoscale 6, 4352–4360 (2014)

    Article  Google Scholar 

  17. Y.B. Liu, M.Y. Liu, T.B. Lan, J. Dou, M.D. Wei, J. Mater. Chem. A 3, 18882–18888 (2015)

    Article  Google Scholar 

  18. R. Giannuzzi, M. Manca, L.D. Marco, M.R. Belviso, A. Cannavale, T. Sibillano, C. Giannini, P.D. Cozzoli, G. Gigli, ACS Appl. Mater. Interfaces 6, 1933–1943 (2014)

    Article  Google Scholar 

  19. K.C. Zhang, J.X. Shen, Y.F. Zhang, J.Y. Zhang, C.B. Wei, X.W. Ma, Mater. Design 88, 713–719 (2015)

    Article  Google Scholar 

  20. Z.G. Yang, D. Choi, S. Kerisit, K.M. Rosso, D.H. Wang, J. Zhang, G. Graff, J. Liu, J. Power Sources 192, 588–598 (2009)

    Article  Google Scholar 

  21. J. Jin, S.Z. Huang, J. Shu, H.E. Wang, Y. Li, Y. Yu, L.H. Chen, B.J. Wang, B.L. Su, Nano Energy 16, 339–349 (2015)

    Article  Google Scholar 

  22. P. Chang, C. Huang, R. Doong, Carbon 50, 4259–4268 (2012)

    Article  Google Scholar 

  23. T. Tao, L.J. He, J. Li, Y.H. Zhang, J. Alloy. Compd. 615, 1052–1055 (2014)

    Article  Google Scholar 

  24. T. Li, N. Lun, Y.X. Qi, C. Wei, Y.K. Sun, H.L. Zhu, J.R. Liu, Y.J. Bai, J. Power Sources 273, 472–478 (2015)

    Article  Google Scholar 

  25. X. Bai, T. Li, Y.X. Qi, X.P. Gao, L.W. Yin, H. Li, H.L. Zhu, N. Lun, Y.J. Bai, Electrochim. Acta 169, 241–247 (2015)

    Article  Google Scholar 

  26. L. Wang, Z.Y. Nie, C.B. Cao, S. Khalid, Y. Wu, X.Y. Xu, J. Power Sources 302, 259–265 (2016)

    Article  Google Scholar 

  27. J.Y. Shen, H. Wang, Y.P. Song, Y. Zhou, N.Q. Ye, L. Fang, L.J. Wang, Chem. Eng. J. 240, 379–386 (2014)

    Article  Google Scholar 

  28. Y. Xiao, X.Y. Wang, Y.G. Xia, Y. Yao, E. Metwalli, Q. Zhang, R. Liu, B. Qiu, M. Rasool, Z.P. Liu, J.Q. Meng, L.D. Sun, C.H. Yan, P.M. Buschbaum, Y.J. Cheng, ACS Appl. Mater. Interfaces 6, 18461–18468 (2014)

    Article  Google Scholar 

  29. X.Y. Wang, J.Q. Meng, M.M. Wang, Y. Xiao, R. Liu, Y.G. Xia, Y. Yao, E. Metwalli, Q. Zhang, B. Qiu, Z.P. Liu, J. Pan, L.D. Sun, C.H. Yan, P.M. Buschbaum, Y.J. Cheng, ACS Appl. Mater. Interfaces 7, 24247–24255 (2015)

    Article  Google Scholar 

  30. X.L. Sun, X.H. Wang, N. Feng, L. Qiao, X.W. Li, D.Y. He, J. Anal. Appl. Pyrol. 100, 181–185 (2013)

    Article  Google Scholar 

  31. E.M. Lotfabad, J. Ding, K. Cui, A. Kohandehghan, W.P. Kalisvaart, M. Hazelton, D. Mitlin, ACS Nano 8, 7115–7129 (2014)

    Article  Google Scholar 

  32. L.P. Wang, Z. Schnepp, M.M. Titirici, J. Mater. Chem. A 1, 5269–5273 (2013)

    Article  Google Scholar 

  33. F. Chen, J. Yang, T. Bai, B. Long, X.Y. Zhou, J. Electroanal. Chem. 768, 18–26 (2016)

    Article  Google Scholar 

  34. P. Zheng, T. Liu, J.Z. Zhang, L.F. Zhang, Y. Liu, J.F. Huang, S.W. Guo, RSC Adv. 5, 40737–40741 (2015)

    Article  Google Scholar 

  35. K.R. Saravanan, N. Kalaiselvi, Carbon 81, 43–53 (2015)

    Article  Google Scholar 

  36. S.Y. Gao, Y. Yan, G. Chen, ACS Sustain. Chem. Eng. 4, 844–850 (2016)

    Article  Google Scholar 

  37. Z.W. Yang, H.J. Guo, X.H. Li, Z.X. Wang, Z.L. Yan, Y.S. Wang, J. Power Sources 329, 339–346 (2016)

    Article  Google Scholar 

  38. L.X. Zeng, C. Zheng, L.C. Xia, Y.X. Wang, M.D. Wei, J. Mater. Chem. A 1, 4293–4299 (2013)

    Article  Google Scholar 

  39. S.W. Han, D.W. Jung, J.H. Jeong, E.S. Oh, Chem. Eng. J. 254, 597–604 (2014)

    Article  Google Scholar 

  40. C.L. Zhang, Q.Y. Zhang, S.F. Kang, X. Li, C.L. Zhang, Q.Y. Zhang, S.F. Kang, X. Li, J. Mater. Chem. A 2, 2801–2806 (2014)

    Article  Google Scholar 

  41. Y.Q. Lai, W.W. Liu, J. Fang, F.R. Qin, M.R. Wang, F. Yu, K. Zhang, RSC Adv. 5, 93676–93683 (2015)

    Article  Google Scholar 

  42. L.F. Shen, X.G. Zhang, H.S. Li, C.Z. Yuan, G.Z. Cao, J. Phys. Chem. Lett. 2, 3096–3101 (2011)

    Article  Google Scholar 

  43. P. Acevedo-Peña, M.E. Rincón, J. Mater. Sci. Mater. Electron. 27, 2985–2993 (2016)

    Article  Google Scholar 

  44. J. Wang, L.F. Shen, H.S. Li, X.Y. Wang, P. Nie, B. Ding, G.Y. Xu, H. Dou, X.G. Zhang, Electrochim. Acta 133, 209–216 (2014)

    Article  Google Scholar 

  45. N. Li, G. Liu, C. Zhen, F. Li, L.L. Zhang, H.M. Cheng, Adv. Funct. Mater. 21, 1717–1722 (2011)

    Article  Google Scholar 

  46. A.D.C. Permana, A. Nugroho, K.Y. Chung, W. Chang, J. Kim, Chem. Eng. J. 241, 216–227 (2014)

    Article  Google Scholar 

  47. B. Rajagopalan, E. Oh, W.M. Choi, J.S. Chung, RSC Adv. 5, 38334–38344 (2015)

    Article  Google Scholar 

  48. S. Södergren, H. Siegbahn, H. Rensmo, H. Lindström, A. Hagfeldt, S. Lindquist, J. Phys. Chem. B 101, 3087–3090 (1997)

    Article  Google Scholar 

  49. X.Y. Hou, Y.J. Hu, H. Jiang, Y.F. Li, W.G. Li, C.Z. Li, J. Mater. Chem. A 3, 9982–9988 (2015)

    Article  Google Scholar 

  50. N.R. Kim, Y.S. Yun, M.Y. Song, S.J. Hong, M. Kang, C. Leal, Y.W. Park, H.J. Jin, ACS Appl. Mater. Interfaces 8, 3175–3181 (2016)

    Article  Google Scholar 

  51. C.J. Chen, Y.W. Wen, X.L. Hu, X.L. Ji, M.Y. Yan, L.Q. Mai, P. Hu, B. Shan, Y.H. Huang, Nat. Commun. 2015, 6929 (2015)

    Article  Google Scholar 

  52. E. McCafferty, J.P. Wightman, Surf. Interface Anal. 26, 549–564 (1998)

    Article  Google Scholar 

  53. C.X. Dong, Y.J. Wang, XPS investigation of carbon-doped TiO2 photocatalysts, World Automation Congress, IEEE, 1–4 (2012)

  54. V. Etacheri, J.E. Yourey, B.M. Bartlett, ACS Nano 8, 1491–1499 (2014)

    Article  Google Scholar 

  55. Y.Q. Fu, Q.L. Wei, X.Y. Wang, H.B. Shu, X.K. Yang, S.H. Sun, J. Mater. Chem. A 3, 13807–13818 (2015)

    Article  Google Scholar 

  56. M.S. Li, X.F. Li, W.H. Li, X.B. Meng, Y. Yu, X.L. Sun, Electrochem. Commun. 57, 43–47 (2015)

    Article  Google Scholar 

  57. C.H. Jiang, M.D. Wei, Z.M. Qi, T. Kudo, I. Honma, H.S. Zhou, J. Power Sources 166, 239–243 (2007)

    Article  Google Scholar 

  58. Y.P. Gan, L.Y. Zhu, H.P. Qin, Y. Xia, H. Xiao, L.S. Xu, L.Y. Ruan, C. Liang, X.Y. Tao, H. Huang, W.K. Zhang, Solid State Ionics 269, 44–50 (2015)

    Article  Google Scholar 

  59. S.J. Hao, B.W. Zhang, S. Ball, B. Hu, J.S. Wu, Y.Z. Huang, Mater. Design 92, 160–165 (2016)

    Article  Google Scholar 

  60. J.Y. Ma, D. Xiang, Z.Q. Li, Q. Li, X.K. Wang, L.W. Yin, Cryst. Eng. Comm. 15, 6800–6807 (2013)

    Article  Google Scholar 

  61. S. Yang, Y. Cai, Y.W. Cheng, C.V. Varanasi, J. Liu, J. Power Sources 218, 140–147 (2012)

    Article  Google Scholar 

  62. S. Xin, Y.G. Guo, L.J. Wan, Accounts Chem. Res. 45, 1759–1769 (2012)

    Article  Google Scholar 

  63. Y.K. Zhou, L. Cao, F.B. Zhang, B.L. He, H.L. Li, J. Electrochem. Soc. 150, A1246–A1249 (2003)

    Article  Google Scholar 

  64. K. Lu, J.T. Xu, J.T. Zhang, B. Song, H.Y. Ma, ACS Appl. Mater. Interfaces 8, 17402–17408 (2016)

    Article  Google Scholar 

  65. T. Xia, W. Zhang, J.B. Murowchick, G. Liu, X.B. Chen, Adv. Energy Mater. 3, 1516–1523 (2013)

    Article  Google Scholar 

  66. K. Lu, Z.Y. Hu, Z.H. Xiang, J.Z. Ma, B. Song, J.T. Zhang, H.Y. Ma, Angew. Chem. Int. Ed. 55, 10448–10452 (2016)

    Article  Google Scholar 

  67. B. Laskova, M. Zukalova, A. Zukal, M. Bousa, L. Kavan, J. Power Sources 246, 103–109 (2014)

    Article  Google Scholar 

  68. B. Zhao, Z.P. Shao, J. Phys. Chem. C 116, 17440–17447 (2012)

    Article  Google Scholar 

  69. L. Peng, H.J. Zhang, Y.J. Bai, Y.Y. Feng, Y. Wang, Chem. Eur. J. 21, 14871–14878 (2015)

    Article  Google Scholar 

  70. Y. Zhang, Y. Meng, K. Zhu, H. Qiu, Y. Ju, Y. Gao, F. Du, B. Zou, G. Chen, Y. Wei, ACS Appl. Mater. Interfaces 8, 7957–7965 (2016)

    Article  Google Scholar 

  71. Y. Cui, X.L. Zhao, R.S. Guo, Mater. Res. Bull. 45, 844–849 (2010)

    Article  Google Scholar 

  72. C.V. Rao, B. Rambabu, Solid State Ionics 181, 839–843 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (Grant No. 21273047) and Key Laboratory of Functional Inorganic Material Chemistry (Heilongjiang University), Ministry of Education. The authors appreciate all referees for valuable comments as well.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoli Cui.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 372 KB)

Appendix: supplementary data

Appendix: supplementary data

Details about phase structure, composition and electrochemical performance of the prepared samples with various carbon content.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Li, Z., Shi, S. et al. Scalable synthesis of TiO2 crystallites embedded in bread-derived carbon matrix with enhanced lithium storage performance. J Mater Sci: Mater Electron 28, 9206–9220 (2017). https://doi.org/10.1007/s10854-017-6655-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6655-6

Keywords

Navigation