Skip to main content
Log in

Effect of composition of front-electrode-paste glass on electrical performance of multicrystalline silicon solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the effects of Si/Pb ratio of Pb–Te–Si–O glasses on the electrical performance of multicrystalline Si solar cells were investigated. We first studied the relationship between the properties of glass frit (such as transition temperature (Tg), crystallization tendency, and aggressiveness) and the Si/Pb ratios. Then, the influence of glass frit Tg on the structure of the contact interface, quality of ohmic contacts, and solar cell electrical performance was investigated. The results showed that the cell based on glass frit produced at moderately low Tg, had smaller series resistance and higher photoelectric conversion efficiency than those based on lower Tg and higher Tg glass frits. The optimal glass frit Tg was 289.6 °C; glass frits can form dense and thick films, which can reduce the bulk resistance of the grid line. At the same time, glass frits can reduce the Ag crystallite size to prevent high junction leakage and shunting of shallow emitters, and probably increase the concentration of Ag crystallites and Ag colloids to help tunnel the thinner glass layer. This led to formation of good ohmic contacts and conductive chains. All these features contributed to reach the best values of photoelectric conversion efficiency (18.628%) and series resistance (0.0019 Ω).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M. A. Green, Prog. Photovolt: Res. Appl. 13 (2005) 447–455.

    Article  Google Scholar 

  2. J. M. Park, K. H. Park, E. S. PARK, S. M. Hong, S. Y. Kim, S. S. Jee, E. S. Lee, S. J. Kim, K. B. Kim, D. H. Kim, J. Eckert, Metall. Mater. Trans. A. 46 (2015) 2443–2448.

    Article  Google Scholar 

  3. S. B. Rane, T. Seth, G. J. Phatak, D. P. Amalnekar, J. Mater. Sci. Mater. Electron. 103 (2012) 25–29.

    Google Scholar 

  4. C. H. Lin, S. Y. Tsai, S. P. Hsu, M. H. Hsieh, Sol. Energy Mater. Sol. Cells. 92 (2008) 1011–1015.

    Article  Google Scholar 

  5. G. Schubert, F. Huster, P. Fath, Sol. Energy Mater. Sol. Cells. 90 (2006) 3399–3406.

    Article  Google Scholar 

  6. K. K. Hong, S. B. Cho, J. S. You, J. W. Jeong, S. M. Bea, J. Y. Huh, Sol. Energy Mater. Sol. Cells. 93 (2009) 898–904.

    Article  Google Scholar 

  7. H. Murakami, S. Fujiwara, I. Kawayama, M. Tonouchi, Photon. Res. 4 (2016) A9–A15.

    Article  Google Scholar 

  8. Y. P. Zhang, Y. X. Yang, J. H. Zheng, G. R. Chen, C. Cheng, J. C. M. Hwang, B. S. Ooi, A. Kovalskiy, H. Jain, Thin Solid Films 518 (2010) e111–e113.

    Google Scholar 

  9. S. Ionkin, B. M. Fish, Z. G. Li, L. Liang, M. E. Lewittes, L. K. Cheng, C. Westphal, J. G. Pepin, F. Gao, Sol. Energy Mater. Sol. Cells. 124 (2014) 39–47.

    Article  Google Scholar 

  10. Z. G. Li, L. Liang, A. S. Ionkin, B. M. Fish, M. E. Lewittes, L. K. Cheng, K. R. Mikeska, J. Appl. Phys. 110 (2011) 074304.

    Article  Google Scholar 

  11. E. Pickwell-MacPherson, C. Schmuttenmaer, Photon. Res. 4 (2016) TP1–TP2.

    Article  Google Scholar 

  12. Y. P. Tai, G. J. Zheng, H. Y. Wang, H. Wang, J. T. Bai, RSC Adv. 5 (2015) 92515–92521.

    Article  Google Scholar 

  13. C. Ballif, D. M. Huljić, G. Willeke, A. Hessler-Wyser, Appl. Phys. Lett. 82 (2003) 1878–1880.

    Article  Google Scholar 

  14. K. K. Hong, S. B. Cho, J. Y. Huh, H. J. Park, J. W. Jeong, Met. Mater. Int. 15 (2009) 307–312.

    Article  Google Scholar 

  15. M. M. Hilali, K. Nakayashiki, C. Khadilkar, R. C. Reedy, A. Rohatgi, A. Shaikh, S. Kim, S. Sridharan, J. Electrochem. Soc. 153 (2006) A5–A11.

    Article  Google Scholar 

  16. T. Wang, E. A. Romanova, N. Abdel-Moneim, D. Furniss, A. Loth, Z. Q. Tang, A. Seddon, T. Benson, A. Lavrinenko, P. U. Jepsen, Photon. Res. 4 (2016) A22–A28.

    Article  Google Scholar 

  17. L. K. Cheng, L. Liang, Z. G. Li, Photovoltaic Specialists Conference (PVSC), 34th IEEE, Philadelphia, 2009, pp. 582–588.

  18. Z. G. Li, L. Liang, L. K. Cheng, J. Appl. Phys. 105 (2009) 066102.

    Article  Google Scholar 

  19. J. Qin, W. J. Zhang, S. X. Bai, Z. F. Liu, Sol. Energy Mater. Sol. Cells. 144 (2016) 256–263.

    Article  Google Scholar 

  20. G. J. Zheng, Y. P. Tai, H. Wang, J. T. Bai, J. Mater. Sci. Mater. Electron. 25 (2014) 3779–3786.

    Google Scholar 

  21. H. Y. Wang, Y. P. Tai, R. X. Li, H. Wang, J. T. Bai, RSC Adv. 6 (2016) 28289–28297.

    Article  Google Scholar 

  22. I. Földvári, A. Peter, R. Voszka, L. A. Kappers, J. Cryst. Growth. 100 (1990) 75–77.

    Article  Google Scholar 

  23. D. Y. Shin, J. Y. Seo, H. Tak, D. Byun, Sol. Energy Mater. Sol. Cells. 136 (2015) 148–156.

    Article  Google Scholar 

  24. Y. P. Zhang, Y. X. Yang, J. H. Zheng, W. Hua, G. R. Chen, Mater. Chem. Phys. 114 (2009) 319–322.

    Article  Google Scholar 

  25. G. Schubert, F. Huster, P. Fath, European Photovoltaic Solar Energy Conference, 19th, Paris, 2004, pp. 813–816

  26. E. Cabreraa, S. Olibeta, J. Glatz-Reichenbacha, R. Kopeceka, D. Reinkeb, G. Schubert, Energy Procedia 8 (2011) 540–545.

    Article  Google Scholar 

  27. W. J. Qin, S. X. Zhang, Z. F. Bai, Y. Liu, Appl. Surf. Sci. 376 (2016) 52–61.

    Article  Google Scholar 

  28. S. L. Wu, W. Wang, L. Li, D. Yu, L. Huang, W. C Liu, X. S. Wu, F. M. Zhang, RSC Adv. 4 (2014) 24384–24388.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the financial supports of the National Hi-Tech Research and Development Program (863) Key Project of China (Nos. 2012AA050301-SQ2011GX01D01292), Key Project of Industrial Science and Technology of Shaanxi Province (Nos. 2016GY-090 and 2016GY-196), and Xi’an Industrial Technology Innovation Project-technology transfer promoting program (Nos. CXY1421,CX1242, and CXY1511-9).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Wang or Jintao Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Ma, S., Ma, Q. et al. Effect of composition of front-electrode-paste glass on electrical performance of multicrystalline silicon solar cells. J Mater Sci: Mater Electron 28, 6936–6949 (2017). https://doi.org/10.1007/s10854-017-6394-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6394-8

Keywords

Navigation