Skip to main content

Advertisement

Log in

Study of reduced graphene oxide film incorporated of TiO2 species for efficient visible light driven dye-sensitized solar cell

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The hybrid reduced graphene oxide (rGO) with titanium dioxide (TiO2) species photoelectrodes forming a TiO2–rGO nanocomposite (TiO2–rGO NC) was prepared using a simple hydrothermal technique to enhance their visible light dye-sensitized solar cells (DSSCs) performances compared with the pure reduced graphene oxide (rGO) photoelectrodes. This study aims to determine the optimum loading content of TiO2 species on the rGO photoelectrodes for improving their visible response in terms of conductivity as well as photoconversion efficiency. A low content of TiO2 (0.3 wt%) species was successfully incorporated into the rGO photoelectrodes lattice and formed a Ti–O–C bond, which significantly maximized the photocurrent generation efficiency and promoted a charge separation by trapping the photo-induced electrons with 7.2%, which is relatively high compared to the pure rGO photoelectrodes (0.67%). However, the excess TiO2 species of 0.4 and 0.5 wt% resulted in poor photoconversion efficiency performance attributed to the over photocatalytic reaction occurred leaving extra holes on the counter electrode. Herein, a novel hybrid formation between rGO and TiO2 nanomaterials by using the one-step hydrothermal technique in order to improve the DSSCs performance which brought a better conductivity, higher photoconversion efficiency (0.67–7.20%), and lower recombination of rGO material was introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. D.W. Chang et al., Graphene in photovoltaic applications: organic photovoltaic cells (OPVs) and dye-sensitized solar cells (DSSCs). J. Mater. Chem. A 2(31), 12136–12149 (2014)

    Article  Google Scholar 

  2. Z. Yin et al., Graphene-based materials for solar cell applications. Adv. Energy Mater. 4(1), 1–19 (2014)

    Google Scholar 

  3. C. Huang, C. Li, G. Shi, Graphene based catalysts. Energy Environ. Sci. 5(10), 8848–8868 (2012)

    Article  Google Scholar 

  4. B.F. Machado, P. Serp, Graphene-based materials for catalysis. Catal. Sci Technol. 2(1), 54–75 (2012)

    Article  Google Scholar 

  5. S. Yang et al., Fabrication of graphene-encapsulated oxide nanoparticles: towards high-performance anode materials for lithium storage. Angew. Chem. Int. Ed. Engl. 49(45), 8408–8411 (2010)

    Article  Google Scholar 

  6. G. Blanita, M.D. Lazar, Review of graphene-supported metal nanoparticles as new and efficient heterogeneous catalysts. Micro Nanosyst. 5(2), 138–146 (2013)

    Article  Google Scholar 

  7. D. Wang et al., Self-assembled TiO2–graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 3(4), 907–914 (2009)

    Article  Google Scholar 

  8. X. Wang, L. Zhi, K. Müllen, Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8(1), 323–327 (2008)

    Article  Google Scholar 

  9. H. Zhang et al., P25-graphene composite as a high performance photocatalyst. ACS Nano 4(1), 380–386 (2009)

    Article  Google Scholar 

  10. X. Pan et al., Comparing graphene-TiO2 nanowire and graphene-TiO2 nanoparticle composite photocatalysts. ACS Appl. Mater. Interfaces 4(8), 3944–3950 (2012)

    Article  Google Scholar 

  11. F.W. Low, C.W. Lai, S.B.A. Hamid, Easy preparation of ultrathin reduced graphene oxide sheets at a high stirring speed. Ceram. Int. 41(4), 5798–5806 (2015)

    Article  Google Scholar 

  12. S.W. Chong, C.W. Lai, S.B.A. Hamid, Green preparation of reduced graphene oxide using a natural reducing agent. Ceram. Int. 41(8), 9505–9513 (2015)

    Article  Google Scholar 

  13. D.C. Marcano et al., Improved synthesis of graphene oxide. ACS Nano 4(8), 4806–4814 (2010)

    Article  Google Scholar 

  14. F.W. Low, C.W. Lai, S.B.A. Hamid, Facile synthesis of high quality graphene oxide from graphite flakes using improved Hummer’s technique. Nanosci. Nanotechnol. 15, 1–5 (2015)

    Article  Google Scholar 

  15. S. Park et al., Hydrazine-reduction of graphite-and graphene oxide. Carbon 49(9), 3019–3023 (2011)

    Article  Google Scholar 

  16. K. Yanagisawa, J. Ovenstone, Crystallization of anatase from amorphous titania using the hydrothermal technique: effects of starting material and temperature. J. Phys. Chem. B 103(37), 7781–7787 (1999)

    Article  Google Scholar 

  17. S.B.A. Hamid et al., Multiwalled carbon nanotube/TiO2 nanocomposite as a highly active photocatalyst for photodegradation of Reactive Black 5 dye. Chin. J. Catal. 35(12), 2014–2019 (2014)

    Article  Google Scholar 

  18. A. Hagfeldt et al., Dye-sensitized solar cells. Chem. Rev. 110(11), 6595–6663 (2010)

    Article  Google Scholar 

  19. Y. Liu, Hydrothermal synthesis of TiO2–RGO composites and their improved photocatalytic activity in visible light. RSC Adv. 4(68), 36040–36045 (2014)

    Article  Google Scholar 

  20. K. Norrish, R.M. Taylor, Quantitative analysis by X-ray diffraction. Clay Miner. Bull. 5(28), 98–109 (1962)

    Article  Google Scholar 

  21. S. Thakur, N. Karak, Green reduction of graphene oxide by aqueous phytoextracts. Carbon 50(14), 5331–5339 (2012)

    Article  Google Scholar 

  22. Y. Wang, Z. Shi, J. Yin, Facile synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites. ACS Appl. Mater. Interfaces 3(4), 1127–1133 (2011)

    Article  Google Scholar 

  23. S. Umrao et al., A possible mechanism for the emergence of an additional band gap due to a Ti–O–C bond in the TiO2–graphene hybrid system for enhanced photodegradation of methylene blue under visible light. RSC Adv. 4(104), 59890–59901 (2014)

    Article  Google Scholar 

  24. A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61(20), 14095 (2000)

    Article  Google Scholar 

  25. W. Shu et al., Synthesis and photovoltaic performance of reduced graphene oxide–TiO2 nanoparticles composites by solvothermal method. J. Alloys Compd. 563, 229–233 (2013)

    Article  Google Scholar 

  26. U. Balachandran, N. Eror, Raman spectra of titanium dioxide. J. Solid State Chem. 42(3), 276–282 (1982)

    Article  Google Scholar 

  27. F.D. Hardcastle, I.E. Wachs, Determination of vanadium-oxygen bond distances and bond orders by Raman spectroscopy. J. Phys. Chem. 95(13), 5031–5041 (1991)

    Article  Google Scholar 

  28. F. Hardcastle, Raman spectroscopy of titania (TiO2) nanotubular water-splitting catalysts. J. Ark. Acad. Sci. 65, 43–48 (2011)

    Google Scholar 

  29. C. Song et al., Dye-sensitized solar cells based on graphene–TiO2 nanoparticles/TiO2 nanotubes composite films. Int. J. Electrochem. Sci. 9, 8090–8096 (2014)

    Google Scholar 

  30. M.A. Green, Solar cell fill factors: general graph and empirical expressions. Solid State Electron. 24(8), 788–789 (1981)

    Article  Google Scholar 

  31. K. Hussein et al., Maximum photovoltaic power tracking: an algorithm for rapidly changing atmospheric conditions. IEE Proc. Gener. Transm. Distrib. 142(1), 59–64 (1995)

    Article  Google Scholar 

  32. W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32(3), 510–519 (1961)

    Article  Google Scholar 

  33. S. Pavasupree et al., One-dimensional nanostructured TiO2 for photocatalytic activity and dye-sensitized solar cells applications, in The 2nd Joint International Conference on Sustainable Energy and Environment (2006)

  34. P. Wang et al., One-step synthesis of easy-recycling TiO2–rGO nanocomposite photocatalysts with enhanced photocatalytic activity. Appl. Catal. B Environ. 132, 452–459 (2013)

    Article  Google Scholar 

  35. H. Ding et al., Reduction of graphene oxide at room temperature with vitamin C for RGO–TiO2 photoanodes in dye-sensitized solar cell. Thin Solid Films 584, 29–36 (2015)

    Article  Google Scholar 

  36. H. Liu et al., Reduction of graphene oxide to highly conductive graphene by Lawesson’s reagent and its electrical applications. J. Mater. Chem. C 1(18), 3104–3109 (2013)

    Article  Google Scholar 

  37. Q. Wang et al., Characteristics of high efficiency dye-sensitized solar cells. J. Phys. Chem. B 110(50), 25210–25221 (2006)

    Article  Google Scholar 

  38. B. Tan, Y. Wu, Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites. J. Phys. Chem. B 110(32), 15932–15938 (2006)

    Article  Google Scholar 

  39. G. Eda et al., Partially oxidized graphene as a precursor to graphene. J. Mater. Chem. 21(30), 11217–11223 (2011)

    Article  Google Scholar 

  40. H. Tang et al., Electrical and optical properties of TiO2 anatase thin films. J. Appl. Phys. 75(4), 2042–2047 (1994)

    Article  Google Scholar 

  41. M.H. Yeh et al., Dye-sensitized solar cells with reduced graphene oxide as the counter electrode prepared by a green photothermal reduction process. Chem. Phys. Chem. 15(6), 1175–1181 (2014)

    Google Scholar 

  42. A. Sedghi, H.N. Miankushki, Influence of TiO2 electrode properties on performance of dye-sensitized solar cells. Int. J. Electrochem. Sci. 7, 12078–12089 (2012)

    Google Scholar 

  43. Z. Xiang et al., Improving energy conversion efficiency of dye-sensitized solar cells by modifying TiO2 photoanodes with nitrogen-reduced graphene oxide. ACS Sustain. Chem. Eng. 2(5), 1234–1240 (2014)

    Article  Google Scholar 

  44. Y. Ohsaki et al., Dye-sensitized TiO2 nanotube solar cells: fabrication and electronic characterization. Phys. Chem. Chem. Phys. 7(24), 4157–4163 (2005)

    Article  Google Scholar 

  45. P. Wang et al., Synthesis of reduced graphene oxide-anatase TiO2 nanocomposite and its improved photo-induced charge transfer properties. Nanoscale 3(4), 1640–1645 (2011)

    Article  Google Scholar 

  46. S. Dai et al., Preparation of highly crystalline TiO2 nanostructures by acid-assisted hydrothermal treatment of hexagonal-structured nanocrystalline titania/cetyltrimethyammonium bromide nanoskeleton. Nanoscale Res. Lett. 5(11), 1829–1835 (2010)

    Article  Google Scholar 

  47. X. Liu et al., Microwave-assisted synthesis of TiO2-reduced graphene oxide composites for the photocatalytic reduction of Cr(VI). RSC Adv. 1(7), 1245–1249 (2011)

    Article  Google Scholar 

  48. L.-L. Tan et al., Reduced graphene oxide–TiO2 nanocomposite as a promising visible-light-active photocatalyst for the conversion of carbon dioxide. Nanoscale Res. Lett. 8(1), 1–9 (2013)

    Article  Google Scholar 

  49. X.-Y. Zhang et al., Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. J. Mater. Chem. 20(14), 2801–2806 (2010)

    Article  Google Scholar 

  50. S.P. Lim et al., Reduced graphene oxide–titania nanocomposite-modified photoanode for efficient dye-sensitized solar cells. Int. J. Energy Res. 39(6), 812–824 (2015)

    Article  Google Scholar 

  51. M. Velasco-Soto et al., Selective band gap manipulation of graphene oxide by its reduction with mild reagents. Carbon 93, 967–973 (2015)

    Article  Google Scholar 

  52. X. Cao et al., Hierarchical composites of TiO2 nanowire arrays on reduced graphene oxide nanosheets with enhanced photocatalytic hydrogen evolution performance. J. Mater. Chem. A 2(12), 4366–4374 (2014)

    Article  Google Scholar 

  53. M. Safarpour, A. Khataee, V. Vatanpour, Effect of reduced graphene oxide/TiO2 nanocomposite with different molar ratios on the performance of PVDF ultrafiltration membranes. Sep. Purif. Technol. 140, 32–42 (2015)

    Article  Google Scholar 

  54. M.-J. Jeng et al., Dye-sensitized solar cells with anatase TiO2 nanorods prepared by hydrothermal method. Int. J. Photoenergy 2013, 1–9 (2013)

    Google Scholar 

  55. J. Van de Lagemaat, N.-G. Park, A. Frank, Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystalline TiO2 solar cells: a study by electrical impedance and optical modulation techniques. J. Phys. Chem. B 104(9), 2044–2052 (2000)

    Article  Google Scholar 

  56. J.D. Roy-Mayhew, I.A. Aksay, Graphene materials and their use in dye-sensitized solar cells. Chem. Rev. 114(12), 6323–6348 (2014)

    Article  Google Scholar 

  57. S. Pavasupree et al., Synthesis, characterization, photocatalytic activity and dye-sensitized solar cell performance of nanorods/nanoparticles TiO2 with mesoporous structure. J. Photochem. Photobiol. A Chem. 184(1), 163–169 (2006)

    Article  Google Scholar 

  58. Y.H. Ng et al., To what extent do graphene scaffolds improve the photovoltaic and photocatalytic response of TiO2 nanostructured films? J. Phys. Chem. Lett. 1(15), 2222–2227 (2010)

    Article  Google Scholar 

  59. M. Freitag, Graphene: nanoelectronics goes flat out. Nat. Nanotechnol. 3(8), 455–457 (2008)

    Article  Google Scholar 

  60. A. Adán-Más, D. Wei, Photoelectrochemical properties of graphene and its derivatives. Nanomaterials 3(3), 325–356 (2013)

    Article  Google Scholar 

  61. L.L. Tan, S.P. Chai, A.R. Mohamed, Synthesis and applications of graphene-based TiO2 photocatalysts. ChemSusChem 5(10), 1868–1882 (2012)

    Article  Google Scholar 

  62. G. Williams, B. Seger, P.V. Kamat, TiO2–graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2(7), 1487–1491 (2008)

    Article  Google Scholar 

  63. K.E. Lee et al., Further understanding of the adsorption mechanism of N719 sensitizer on anatase TiO2 films for DSSC applications using vibrational spectroscopy and confocal Raman imaging. Langmuir 26(12), 9575–9583 (2010)

    Article  Google Scholar 

  64. C. Charbonneau et al., Preparation and DSSC performance of mesoporous film photoanodes based on aqueous-synthesized anatase nanocrystallites. Electrochem. Solid State Lett. 13(8), H257–H260 (2010)

    Article  Google Scholar 

  65. S. Sun, L. Gao, Y. Liu, Enhanced dye-sensitized solar cell using graphene–TiO2 photoanode prepared by heterogeneous coagulation. Appl. Phys. Lett. 96(8), 3113 (2010)

    Google Scholar 

  66. H.-S. Ko et al., Efficiency characteristics of dye-sensitized solar cells (DSSCs) by incorporation of TiO2-reduced graphene oxide composite electrodes. Mol. Cryst. Liq. Cryst. 579(1), 83–88 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by Postgraduate Research Grant (PPP) Grant (PG210-2014B) and MOSTI-Science Fund, 03-01-03-SF1032 (SF003-2015) from the University of Malaya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin Wei Lai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Low, F.W., Lai, C.W. & Abd Hamid, S.B. Study of reduced graphene oxide film incorporated of TiO2 species for efficient visible light driven dye-sensitized solar cell. J Mater Sci: Mater Electron 28, 3819–3836 (2017). https://doi.org/10.1007/s10854-016-5993-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5993-0

Keywords

Navigation