Skip to main content

Advertisement

Log in

Effects of annealing temperature optimization on the efficiency of ZnO nanoparticles photoanode based dye sensitized solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, the effect of annealing temperatures (300–500 °C) optimization on the performance of ZnO nanoparticles based dye-sensitized solar cells (DSSCs) was investigated in detail. We have synthesized ZnO nanoparticles by simple and cost-effective aqueous chemical method. Crystallography, phase determination and morphology were observed by X-ray diffraction (XRD), micro raman and field emission scanning electron microscopy (FESEM). The present article describes the photocurrent density–voltage (J–V) characteristic of the DSSCs using ZnO nanoparticles photoelectrodes annealed at various temperatures. At low annealing temperature (300 °C) minimum photocurrent density of 5.70 mA/cm2 was obtained, which gradually increased up to a value 8.82 mA/cm2 at 400 °C attributed to a better charge collection. The electrical properties were found to be dependent on the annealing temperature of photoelectrode for DSSC. Furthermore, by increasing the annealing temperature up to 500 °C a reduction in photocurrent density (8.61 mA/cm2) was found. The IPCE and impedance analyses reveal adequate improvements. The impedance study shows a decrease in the charge transport resistance and an increment in the chemical capacitance of the solar cell. On the basis of our results, we could conclude that ZnO photoanode annealed at 400 °C temperature are better suited for fabricating DSSC with improved efficiency (3.35 %), photo-current density (8.82 mA/cm2), and fill factor (57.78 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. LEl Chaar, L.A. Lamont, NEl Zein, Renew. Sustain. Energy Rev. 15, 2165 (2011)

    Article  Google Scholar 

  2. B. O’Regan, M. Grätzel, Nature 353, 737 (1991)

    Article  Google Scholar 

  3. M. Gratzel, J. Photochem. Photobiol. C Photochem. Rev. 4(2), 145 (2003)

    Article  Google Scholar 

  4. M. Gratzel, Inorg. Chem. 44, 6841 (2005)

    Article  Google Scholar 

  5. J. Burschka, N. Pellet, S.J. Moon, R.H. Baker, P. Gao, M.K. Nazeeruddin, M. Gratzel, Nature 499(7458), 316 (2013)

    Article  Google Scholar 

  6. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pattersson, Chem. Rev. 110, 6595 (2010)

    Article  Google Scholar 

  7. Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L.Y. Han, Jpn. J. Appl. Phys. 45(25), L638 (2006)

    Article  Google Scholar 

  8. Z.S. Wang, M. Yanagida, K. Sayama, H. Sugihara, Chem. Mater. 18(12), 2912 (2006)

    Article  Google Scholar 

  9. M. Gratzel, Prog. Photovolt. Res. Appl. 14, 429 (2006)

    Article  Google Scholar 

  10. P. Raksa, S. Nilphai, A. Gardchareon, S. Choopun, Thin Solid Films 517, 4741 (2009)

    Article  Google Scholar 

  11. Y. Chiba, A. Islam, R. Komiya, N. Koide, L. Han, Appl. Phys. Lett. 88, 223505 (2006)

    Article  Google Scholar 

  12. J. Bandara, U.W. Pradeep, R.G.S.J. Bandara, J. Photochem. Photobiol. A Chem 170, 373 (2005)

    Article  Google Scholar 

  13. Y. Caglar, S. Aksoy, S. Ilican, M. Caglar, Superlattices Microstruct. 46, 469 (2009)

    Article  Google Scholar 

  14. M.R. Parra, F.Z. Haque, Optik 125, 4629 (2014)

    Article  Google Scholar 

  15. P. Pandey, N. Singh, F.Z. Haque, Optik 124, 1188 (2013)

    Article  Google Scholar 

  16. Q. Zhang, C.S. Dandeneau, X. Zhou, G. Cao, Adv. Mater. 21, 4087 (2009)

    Article  Google Scholar 

  17. J.A. Anta, E. Guillen, R.T. Zaera, J. Phys. Chem. C 116(21), 11413 (2012)

    Article  Google Scholar 

  18. F. Xu, L. Sun, Energy Environ. Sci. 4, 818 (2011)

    Article  Google Scholar 

  19. S. Baskoutas, G. Bester, J. Phys. Chem. C 114(20), 9301 (2010)

    Article  Google Scholar 

  20. C.X. He, B.X. Lei, Y.F. Wang, C.Y. Su, Y.P. Fang, D.B. Kuang, Chem.-Eur. J 16, 8757 (2010)

    Article  Google Scholar 

  21. Y. Shi, C. Zhu, L. Wang, C. Zhao, W. Li, K.K. Fung, T. Ma, A. Hagfeldt, N. Wang, Chem. Mater. 25, 1000 (2013)

    Article  Google Scholar 

  22. K. Kakiuchi, E. Hosono, S. Fujihara, J. Photochem. Photobiol. A Chem. 179, 81 (2006)

    Article  Google Scholar 

  23. A.R. Rao, V. Dutta, Nanotechnology 19, 445712 (2008)

    Article  Google Scholar 

  24. M. Giannouli, F. Spiliopoulou, Renew. Energy 41, 115 (2012)

    Article  Google Scholar 

  25. W. Ch Chang, ChH Lee, W. Ch Yu, ChM Lin, Nanoscale Res. Lett. 7, 688 (2012)

    Article  Google Scholar 

  26. M.H. Lai, M.W. Lee, G.J. Wang, M.F. Tai, Int. J. Electrochem. Sci. 6, 2122 (2011)

    Google Scholar 

  27. S.H. Kang, S.H. Chio, M.S. Kang, J.Y. Kim, H.S. Kim, T. Hyeon, Y.E. Sung, Adv. Mater. 20, 54 (2008)

    Article  Google Scholar 

  28. J.R. Jennings, A. Ghicov, L.M. Peter, P. Schmuki, A.B. Walker, J. Am. Chem. Soc. 130, 13364 (2008)

    Article  Google Scholar 

  29. W. Yang, F. Wan, S. Chen, C. Jiang, Nanoscale Res. Lett. 4, 1486 (2009)

    Article  Google Scholar 

  30. H.Y. Lai, Y.C. Lin, W.H. Chen, G.J. Chen, W.C. Kung, R. Vittal, K.C. Ho, J. Mater. Chem. 20, 9379 (2010)

    Article  Google Scholar 

  31. J.H. Noh, S.H. Lee, S. Lee, H.S. Jung, Electron. Mater. Lett. 4, 71 (2008)

    Google Scholar 

  32. V. Thavasi, V. Renugopalakrishnan, R. Jose, S. Ramakrishna, Mater. Sci. Eng., R 63, 81 (2009)

    Article  Google Scholar 

  33. M. Matsui, Y. Hashimoto, K. Funabiki, J.Y. Jin, T. Yoshida, H. Minoura, Synth. Met. 148, 147 (2005)

    Article  Google Scholar 

  34. P. Pandey, R. Kurchania, F.Z. Haque, Optik 126, 301 (2015)

    Article  Google Scholar 

  35. H. Siddiqui, M.S. Qureshi, F.Z. Haque, Optik 125, 4663 (2014)

    Article  Google Scholar 

  36. P. Chand, A. Gaur, A.J. Kumar, J. Alloys Compd. 539, 174 (2012)

    Article  Google Scholar 

  37. A. Georgea, S.K. Sharma, S. Chawla, M.M. Malik, M.S. Qureshi, J. Alloys Compd 509, 5942 (2011)

    Article  Google Scholar 

  38. T. NgoDuc, K. Singh, M. Meyyappan, M.M. Oye, Nanotechnol 23, 194015 (2012)

    Article  Google Scholar 

  39. M. Willander, L.L. Yang, A. Wadeasa, S.U. Ali, M.H. Asif, Q.X. Zhao, O. Nur, J. Mater. Chem. 19(7), 1006 (2009)

    Article  Google Scholar 

  40. S. Filippov, X.J. Wang, M. Devika, N.K. Reddy, C.W. Tu, W.M. Chen, I.A. Buyanova, J. Appl. Phys. 113, 214302 (2013)

    Article  Google Scholar 

  41. W.J. Li, E.W. Shi, W.Z. Zhong, Z.W. Yin, J. Cryst. Grwoth 203, 186 (1999)

    Article  Google Scholar 

  42. J. Li, S. Srinivasan, G.N. He, J.Y. Kang, S.T. Wu, F.A. Ponce, J. Cryst. Growth 310, 559 (2008)

    Article  Google Scholar 

  43. K. Govender, D.S. Boyle, P.B. Kenway, P. O’Brien, J. Mater. Chem. 14, 2575 (2004)

    Article  Google Scholar 

  44. A. Jana, P.P. Das, S. Agarkar, P.S. Devi, Sol. Energy 102, 143 (2014)

    Article  Google Scholar 

  45. A. Al, Kahlout. J. Assoc. Arab Univ. Basic Appl. Sci. 17, 66 (2015)

    Google Scholar 

  46. P.P. Das, S.A. Agarkar, S. Mukhopadhyay, U. Manju, S.B. Ogale, P.S. Devi, Inorg. Chem. 53, 3961 (2014)

    Article  Google Scholar 

  47. J. Halme, P. Vahermaa, K. Miettunen, P. Lund, Adv. Mater. 22, E210 (2010)

    Article  Google Scholar 

  48. R.A. Naphade, M. Tathavadekar, J.P. Jog, S. Agarkar, S.B. Ogale, J. Mater. Chem. A 2, 975 (2014)

    Article  Google Scholar 

  49. J. Bisquert, Phys. Chem. Chem. Phys. 10, 49 (2008)

    Article  Google Scholar 

  50. J. Bisquert, Phys. Chem. Chem. Phys. 5, 5360 (2003)

    Article  Google Scholar 

  51. P. Teesetsopon, S. Kuma, J. Dutta, Int. J. Electrochem. Sci. 7, 4988 (2012)

    Google Scholar 

  52. M.C. Kao, H.Z. Chen, S.L. Young, Appl. Phys. A-Mater 98, 595 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

PP and MRP would like to thank Council of Scientific & Industrial Research-Human Resource Development Group (CSIR-HRDG) India for providing Senior Research Fellowship (SRF) vide acknowledgment Nos. 163025/2K13/1 & 163320/2K14/1 and Director, Maulana Azad National institute of Technology, Bhopal. The authors are grateful to Director, CSIR-National Chemical Laboratory, Pune, India for kindly providing the experimental facilities for DSSC fabrication and device testing along with X-ray diffraction, FESEM and Raman spectroscopy characterizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Padmini Pandey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, P., Parra, M.R., Haque, F.Z. et al. Effects of annealing temperature optimization on the efficiency of ZnO nanoparticles photoanode based dye sensitized solar cells. J Mater Sci: Mater Electron 28, 1537–1545 (2017). https://doi.org/10.1007/s10854-016-5693-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5693-9

Keywords

Navigation