Skip to main content

Advertisement

Log in

Preparation and characterization of biopolymer electrolyte based on cellulose acetate for potential applications in energy storage devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this present work, the solution casting technique was utilized to develop the proton conducting solid biopolymer electrolyte by the complex formation of cellulose acetate (CA) with the ammonium thiocyanate (NH4SCN) salt. The crystalline nature and complex formation of CA with different concentrations of NH4SCN were investigated using X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopic techniques. The XRD analysis revealed that the amorphous natures of the CA complex were increased with increase of NH4SCN salt concentration, which leads to the higher ionic conductivity. The FTIR analysis confirmed the complex formation between CA and salt matrix. Differential scanning calorimetry (DSC) was used to predict the glass transition temperature (Tg) values, which reveals that the Tg value increase with respect to the increase of NH4SCN concentration. The electrical conductivity was measured using AC impedance analyzer, which showed that the magnitude of ionic conductivity increases with an increase in salt concentration up to 50CA:50NH4SCN. The 50CA:50NH4SCN has maximum ionic conductivity value of 3.31 × 10−3 S cm−1. Transference number measurement was carried out to investigate the nature of the charge transport species in the polymer electrolyte. The proton battery was constructed with the highest conducting polymer electrolyte 50CA:50NH4SCN and its open circuit voltage with load were studied. Hence, the present investigation paves the way for the development of fuel cell and primary proton battery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Karmakar, A. Ghosh, Dielectric permittivity and electric modulus of polyethyleneoxide (PEO)-LiClO4 composite electrolyte. Curr. Appl. Phys. 12(2), 539–543 (2012)

    Article  Google Scholar 

  2. W.H. Meyer, Polymer electrolytes for lithium-ion batteries. Adv. Mater. 10(6), 439–448 (1998)

    Article  Google Scholar 

  3. A.S. Ahmad Khiar, A.K. Arof, Conductivity studies of starch-based polymer electrolytes. Ionics 16, 123–129 (2010)

    Article  Google Scholar 

  4. K. Pradeep, Varshney, Shikha Gupta, natural polymer-based electrolytes for electrochemical devices: a review. Ionics 17, 479–483 (2011)

    Article  Google Scholar 

  5. L. Ponez, F.C. Sentanin, S.R. Majid, A.K. Arof, A. Pawlicka, Ion-conducting electrolytes based on gelatin and containing LiI/I2 for electrochromic devices. Mol. Cryst. Liq. Cryst. 554, 239–251 (2012)

    Article  Google Scholar 

  6. S.B. Aziz, Z.H.Z. Abidin, A.K. Arof, Effect of silver nanoparticles on the dc conductivity in Chitosan silvertriflate polymer electrolyte. Phys. B 405, 4429–4433 (2010)

    Article  Google Scholar 

  7. N.A. Nik Aziz, N.K. Idris, M.I.N. Isa, Proton conducting polymer electrolyte methylcellulose doped ammonium fluoride: conductivity and ionic transport study. Int. J. Phys. Sci. 5(6), 748–752 (2010)

    Google Scholar 

  8. A. Daniel Cerqueira, J.M. Artur Valente, R. Guimes Filho, D. Hugh Burrows, Synthesis and properties of polyaniline-cellulose acetate blends: the use of sugarcane bagasse waste and the effect of the substitution degree. Carbohydr. Polym. 78, 402–408 (2009)

    Article  Google Scholar 

  9. S. Ramesh, R. Shanthi, Ezra Morris, characterization of conducting cellulose acetate based polymer electrolytes doped with “green” ionic mixture. Carbohydr. Polym. 9, 14–21 (2013)

    Article  Google Scholar 

  10. S. Ramesh, R. Shanthi, Ezra Morris, plactizing effect of 1-allyl-3-methylimidazolium chloride in cellulose acetate based polymer electrolytes. Carbohydr. Polym. 87, 2624–2629 (2012)

    Article  Google Scholar 

  11. N.A. Johari, T.I.T. Kudin, A.M.M. Ali, T. Winie, M.Z.A. Yahya, Studies on cellulose acetate-based gel polymer electrolytes for proton batteries. Mater. Res. Innov. 13(3), 232–234 (2009)

    Article  Google Scholar 

  12. N.A. Johari, T.I.T. Kudin, A.M.M. Ali, M.Z.A. Yahya, Electrochemical studies of composite cellulose acetate-based polymer gel electrolytes for proton. Proc. Natl. Acad. Sci. Sect. A Phys. Sci. 82(1), 49–52 (2009)

    Article  Google Scholar 

  13. G.M. Wu, S.J. Lin, C.C. Yang, in Fuel Cell Research Trends, ed. by L.O. Vasquez (Nova Science Publishers, Inc., Newyork, 2007), p. 448

    Google Scholar 

  14. S.Z.Z. Abidin, A.M.M. Ali, O.H. Hassan, M.Z.A. Yahya, Electrochemical studies on cellulose acetate-LiBOB polymer gel electrolytes. Int. J. Electrochem. Sci. 8, 7320–7326 (2013)

    Google Scholar 

  15. M. Selvakumar, D. Krishna Bhat, LiClO 4 Doped Cellulose Acetate as Biodegradable Polymer Electrolyte for Supercapacitors (Wiley, Hoboken, 2008). doi:10.1002/app.28671

    Google Scholar 

  16. S. Chandra, S.A. Hashmi, G. Prasad, Studies on ammonium perchlorate doped polyethyleneoxide polymer electrolyte. Solid State Ion. 40–41, 651–654 (1990)

    Article  Google Scholar 

  17. M. Kumar, S. Sekhon, Role of plasticizer’s dielectric constant on conductivity modification of PEO-NH4F polymer electrolytes. Eur. Polym. 38, 1297–1304 (2002)

    Article  Google Scholar 

  18. F.M. Gray, Solid Polymer Electrolytes (VCH Publishers Inc, New York, 1991)

    Google Scholar 

  19. S.A. Hashmi, A. Kumar, K.K. Maurya, S. Chandra, Proton-conducting polymer electrolyte. I. The polyethylene oxide + NH4ClO4 system. J. Phys. D Appl. Phys. 23(10), 1307 (1993)

    Article  Google Scholar 

  20. N.A. Aziza, S.R. Majida, R. Yahyaa, A.K. Arof, Conductivity, structure, and thermal properties of chitosan-based polymer electrolytes with nanofillers. Wiley Online Lib. (2009). doi:10.1002/pat.1619

    Google Scholar 

  21. M.F. Shukur, Y.M. Yusof, S.M.M. Zawawi, H.A. Illias, M.F.Z. Kadir, Conductivity and transport studies of plasticized Chitosan-based proton conducting biopolymer electrolytes. Phys. Scr. 57, 014050 (2013)

    Article  Google Scholar 

  22. M.P. Aji, Masturi, S. Bijaksana, Khairurrijal, M. Abdullah, A general formula for ion concentration dependent electrical conductivities in polymer electrolytes. Am. J. Appl. Sci. 9(6), 946–954 (2012)

    Article  Google Scholar 

  23. R. Baskaran, S. Selvasekarapandian, N. Kuwata, J. Kawamura, T. Hattori, Conductivity and thermal studies of blend polymer electrolytes based on PVAc–PMMA. Solid State Ion. 177(26), 2679–2682 (2006)

    Article  Google Scholar 

  24. R.M. Hodge, G.H. Edward, G.P. Simon, Water absorption and states of water in semicrystalline poly(vinyl alcohol) films. Polymer 37, 1371–1376 (1996)

    Article  Google Scholar 

  25. M.F.Z. Kadir, S.R. Majid, A.K. Arof, Plasticized chitosan–PVA blend polymer electrolyte based proton battery. Electrochim. Acta 55, 1475–1482 (2010)

    Article  Google Scholar 

  26. M. Ali, Influence of glycol additives on the structure and performance of cellulose acetate/zinc oxide blend electrolytes. Desalination 270, 98–104 (2011)

    Article  Google Scholar 

  27. G. Hirankumar, S. Selvasekarapandian, M.S. Bhuvaneswari, R. Baskaran, M. Vijayakumar, AC impedance studies on proton conducting polymer electrolyte complexes (PVA + CH3 COONH4). Ionics 10, 135–138 (2004)

    Article  Google Scholar 

  28. M. Xu, E.M. Eyring, S. Petrueei, Molecular dynamics and infrared spectra of NaSCN dissolved in the solvent macrocycle 15-crown-5 and polyethylene oxide dimethyl ether-250. J. Phys. Chem. 99(40), 14589–14596 (1995)

    Article  Google Scholar 

  29. H. Zhang, X. Xuan, J. Wang, H. Wamg, FT-IR investigation of ion association in PEO–MSCN (M = Na, K) polymer electrolytes. Solid State Ion. 164, 73–79 (2003)

    Article  Google Scholar 

  30. A. Pottier, The Hydrogen Bond and Chemical Parameters Favoring Proton Mobility in Solid, in Proton Conductors: Solid, Electrolytes and Gel Materials and Devices (Cambridge University Press, Cambridge, 1992)

    Google Scholar 

  31. T. Norby, Solid State Ion. 125, 1–11 (1999)

    Article  Google Scholar 

  32. B.H. Stuar, Infrared Spectroscopy: Fundamentals and Applications (Wiley, Colorado, 2004)

    Book  Google Scholar 

  33. H. Nithya, Ph.D thesis entitled Characterization of polymer electrolyte poly(Epichlorohydrin–ethyleneoxide): LiClO4 (2011)

  34. C.A. Angell, K. Xu, S.S. Zhang, N. Videa, Variations on the salt-polymer electrolyte theme for flexible solid electrolytes. Solid State Ion. 86–88, 17–28 (1996)

    Article  Google Scholar 

  35. W.A. Gazotti, M.A.S. Spinacé, E.M. Girotto, M.A. De Paoli, Polymer electrolytes based on ethylene oxide–epichlorohydrin copolymers. Solid State Ion. 130, 281–291 (2000)

    Article  Google Scholar 

  36. G.G. Silva, N.H.T. Lemes, C.N. Polo da Fonseca, M.A. De Paoli, Solid state polymeric electrolytes based on poly (epichlorohydrin). Solid State Ion. 93, 105–116 (1997)

    Article  Google Scholar 

  37. J.R. Macdonald (ed.), Impedance Spectroscopy (Wiley, New York, 1987)

    Google Scholar 

  38. B.A. Boukamp, Solid State Ion. 20, 301 (1986)

    Article  Google Scholar 

  39. B.A. Boukamp, Solid State Ion. 18&19, 136 (1986)

    Article  Google Scholar 

  40. H. Nithya, S. Selvasekarapandian, P. ChristopherSelvin, D. ArunKumar, M. Hemaa, D. Prakash, Characterization of nanocomposite polymer electrolyte based on P(ECH-EO). Phys. B 406, 3367–3373 (2011)

    Article  Google Scholar 

  41. S.H. Kim, J.Y. Kim, H.S. Kim, H.N. Cho, Ionic conductivity of polymer electrolytes based on phosphate and polyether copolymers. Solid State Ion. 116, 63–71 (1999)

    Article  Google Scholar 

  42. C. Kim, G. Lee, K. Leo, K.S. Ryu, S.H. Chang, Polymer electrolytes prepared by polymerizing mixtures of polymerizable PEO-oligomers, copolymer of PVDC and poly(acrylonitrile), and lithium triflate. Solid State Ion. 123, 251–257 (1999)

    Article  Google Scholar 

  43. A.K. Jonscher, The universal dielectric response. Nature 267, 673–679 (1977)

    Article  Google Scholar 

  44. N. Rajeswari, C. Sanjeeviraja, J. Kawamura, S. Asath Bahadur, A study on polymer blend electrolyte based on PVA/PVP with proton salt. Polym. Bull. (2014). doi:10.1007/s00289-014-1111-8

    Google Scholar 

  45. J.R. Mac Callum, C.A. Vincent, low frequency dielectric properties of polyether electrolytes. Elsevier Appl. Sci. 43–60 (1989)

  46. R. Mishra, K.J. Rao, Electrical conductivity studies of poly(ethyleneoxide)-poly(vinylalcohol) blends. Solid State Ion. 106, 113–127 (1998)

    Article  Google Scholar 

  47. R. Baskaran, S. Selvasekarapandian, N. Kuwata, J. Kawamura, T. Hattori, Ac impedance, DSC and FT-IR investigations on (x) PVAc–(1_x) PVdF blends with LiClO4. Mater. Chem. Phys. 98, 55–61 (2006)

    Article  Google Scholar 

  48. K. Adachi, O. Urakawa, Dielectric study of concentration fluctuations in concentrated polymer solutions. J. Non-Cryst. Solids 307–310, 667 (2002)

    Article  Google Scholar 

  49. S. Ramesh, A.K. Arof, Ionic conductivity studies of plasticized poly(vinyl chloride) polymer electrolytes. Mater. Sci. Eng. B 85, 11–15 (2001)

    Article  Google Scholar 

  50. J.B. Wagner, C.J. Wagner, Electrical conductivity measurements on cuprous halides. Chem. Rev. 26, 1597 (1957)

    Google Scholar 

  51. T. Winnie, A.K. Arof, Transport properties of hexanoyl chitosan based gel electrolyte. Ionics 12, 149–152 (2006)

    Article  Google Scholar 

  52. S. Chandra (ed.), Superionic Solids—Principles and Applications, North Holland, Amsterdam (1981)

  53. K. Singh, R.U. Tiwari, V.K. Deshpande, Performance of a solid-state battery with a proton-conducting electrolyte. J. Power Sour. 1, 65–71 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Selvasekarapandian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monisha, S., Selvasekarapandian, S., Mathavan, T. et al. Preparation and characterization of biopolymer electrolyte based on cellulose acetate for potential applications in energy storage devices. J Mater Sci: Mater Electron 27, 9314–9324 (2016). https://doi.org/10.1007/s10854-016-4971-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4971-x

Keywords

Navigation