Skip to main content
Log in

Hydrothermal synthesis of graphene-MnO2-polyaniline composite and its electrochemical performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

High performance Graphene-MnO2-polyaniline (Graphene/MnO2/PANI) nanocomposite was synthesized by hydrothermal process. The structure and morphology of Graphene/MnO2/PANI nanocomposite were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). The electrochemical properties of composite were evaluated by constant current charge–discharge, cyclic voltammetry and AC impedance, respectively. The results show that the prepared Graphene/MnO2/PANI nanocomposite exhibits greatly enhanced specific capacitance (305 F g−1) as compared to that of pristine graphene (155 F g−1) and MnO2/PANI (240 F g−1) in 1 M Na2SO4 solution. In addition, the capacity of the Graphene/MnO2/PANI nanocomposite still maintains 90 % after 1000 charge–discharge cycles at a current density of 1 A g−1, exhibiting potential applications in electrode materials for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F. Su, M. Miao, H. Niu, Z. Wei, ACS Appl. Mater. Interfaces 6, 2553–2560 (2014)

    Article  Google Scholar 

  2. Q. Cao, H. Kim, N. Pimparkar, J.P. Kulkarni, C. Wang, M. Shim, K. Roy, M.A. Alam, Nature 454, 495–500 (2008)

    Article  Google Scholar 

  3. Ki-Seok Kim, Soo-Jin Park, J. Solid State Electrochem. 16, 2751–2758 (2012)

    Article  Google Scholar 

  4. G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41, 797–828 (2012)

    Article  Google Scholar 

  5. P.J. Hall, M. Mirzaeian, S.I. Fletcher, F.B. Sillars, A.J.R. Rennie, G.O. Shitta-Bey, G. Wilson, A. Crudenb, R. Carterb, Energy Environ. Sci. 3, 1238–1251 (2010)

    Article  Google Scholar 

  6. X. Yang, J. Zhu, L. Qiu, D. Li, Adv. Mater. 23, 2833–2838 (2011)

    Article  Google Scholar 

  7. J.W. Lim, E. Jeong, M.J. Jung, S.I. Lee, Y.S. Lee, J. Ind. Eng. Chem. 18, 116–122 (2012)

    Article  Google Scholar 

  8. M. Jin, G. Han, Y. Chang, H. Zhao, H. Zhang, Electrochim. Acta 56, 9838–9845 (2011)

    Article  Google Scholar 

  9. S.L. Candelaria, Y. Shao, W. Zhou, X. Li, J. Xiao, J. Zhang, Y. Wang, J. Liu, J. Li, G. Cao, Nano Energy 1, 195–220 (2012)

    Article  Google Scholar 

  10. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666–669 (2004)

    Article  Google Scholar 

  11. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183–191 (2007)

    Article  Google Scholar 

  12. A.A. Balandin, S. Ghosh, W.Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8, 902–907 (2008)

    Article  Google Scholar 

  13. C. Lee, X.D. Wei, J.W. Kysar, J. Hone, Science 321, 385–388 (2008)

    Article  Google Scholar 

  14. D.A.C. Brownson, D.K. Kampouris, C.E. Banks, J. Power Sour. 196, 4873–4885 (2011)

    Article  Google Scholar 

  15. D.A.C. Brownson, C.E. Banks, Analyst 135, 2768–2778 (2010)

    Article  Google Scholar 

  16. D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, Chem. Soc. Rev. 39, 228–240 (2010)

    Article  Google Scholar 

  17. M. Pumera, Chem. Rec. 9, 211–223 (2009)

    Article  Google Scholar 

  18. S. Park, R.S. Ruoff, Nat. Nanotechnol. 4, 217–224 (2009)

    Article  Google Scholar 

  19. K. Zhang, L.L. Zhang, X.S. Zhao, J.S. Wu, Chem. Mater. 22, 1392–1401 (2010)

    Article  Google Scholar 

  20. R.K. Sharma, A.C. Rastogi, S.B. Desu, Electrochim. Acta 53, 7690–7695 (2008)

    Article  Google Scholar 

  21. Y. Jin, H. Chen, M. Chen, N. Liu, Q. Li, ACS Appl. Mater. Interfaces 5, 3408–3416 (2013)

    Article  Google Scholar 

  22. H. Gao, F. Xiao, C.B. Ching, H. Duan, ACS Appl. Mater. Interfaces 4, 7020–7026 (2012)

    Article  Google Scholar 

  23. Y. Bai, M. Du, J. Chang, J. Sun, L. Gao, J. Mater. Chem. A 2, 3834–3840 (2014)

    Article  Google Scholar 

  24. S. Chen, W. Xing, J. Duan, X. Huc, S.Q. Qiao, J. Mater. Chem. A 1, 2941–2954 (2013)

    Article  Google Scholar 

  25. I. Shown, A. Ganguly, L.C. Chen, K.H. Chen, Energy Sci. Eng. 3, 2–26 (2015)

    Article  Google Scholar 

  26. X. Liu, P. Shang, Y. Zhang, X. Wang, Z. Fan, B. Wang, Y. Zheng, J. Mater. Chem. A 2, 15273–15278 (2014)

    Article  Google Scholar 

  27. A. Sumboja, U.M. Tefashe, G. Wittstock, P.S. Lee, Adv. Mater. Interfaces 2, 1400154–140015461 (2015)

    Google Scholar 

  28. P. Tang, L. Han, L. Zhang, ACS Appl. Mater. Interfaces 6, 10506–10515 (2014)

    Article  Google Scholar 

  29. O. Mykhailiv, M. Imierska, M. Petelczyc, L. Echegoyen, M.E.P. Brzezinska, Chem.-A Eur. J. 21, 5783–5793 (2015)

    Article  Google Scholar 

  30. A. Vermaa, P.K. Singha, S. Ahmada, ECS Trans. 25, 65–72 (2010)

    Article  Google Scholar 

  31. Y. Yang, D. Kim, M. Yang, P. Schmuki, Chem. Commun. 47, 7746–7748 (2011)

    Article  Google Scholar 

  32. Y.Z. Luo, H.M. Zhang, L. Wang, M. Zhang, T.H. Wang, Electrochim. Acta 180, 983–989 (2015)

    Article  Google Scholar 

  33. C.D. Lokhande, D.P. Dubal, O.S. Joo, Curr. Appl. Phys. 11, 255–270 (2011)

    Article  Google Scholar 

  34. M. Mao, L. Mei, L. Wu, Q. Li, M. Zhang, RSC Adv. 4, 12050–12056 (2014)

    Article  Google Scholar 

  35. C.C. Hu, K.H. Chang, M.C. Lin, Y.T. Wu, Nano Lett. 6, 2690–2695 (2006)

    Article  Google Scholar 

  36. X.H. Zhou, L.F. Li, S.M. Dong, X. Chen, P.X. Han, H.X. Xu, J.H. Yao, C.Q. Shang, Z.H. Liu, G.L. Cui, J. Solid State Electrochem. 16, 877–882 (2012)

    Article  Google Scholar 

  37. F.H. Meng, X.L. Yan, Y. Zhu, P.C. Si, Nanoscale Res. Lett. 8, 179–186 (2013)

    Article  Google Scholar 

  38. Z.B. Lei, F.H. Shi, L. Lu, ACS Appl. Mater. Interfaces 4, 1058 (2012)

    Article  Google Scholar 

  39. D. Zhao, X.Y. Guo, Y. Gao, F. Gao, ACS Appl. Mater. Interfaces 4, 5583–5589 (2012)

    Article  Google Scholar 

  40. M. Kotal, A.K. Thakur, A.K. Bhowmick, Mater. Interfaces 5, 8374–8386 (2013)

    Article  Google Scholar 

  41. W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)

    Article  Google Scholar 

  42. B. Mu, W.B. Zhang, A.Q. Wang, J. Nanopart. Res. 16(2432), 1–12 (2014)

    Google Scholar 

  43. S. Xie, M. Gan, L. Ma, Z. Li, J. Yan, H. Yin, X. Shen, F. Xu, J. Zheng, J. Zhang, J. Hu, Electro-chim. Acta 120, 408–415 (2014)

    Article  Google Scholar 

  44. L. Yu, M.Y. Gan, L. Ma, H. Huang, H.F. Hu, Y.J. Li, Y. Tu, C.Q. Ge, F.F. Yang, J. Yan, Synth. Met. 198, 167–174 (2014)

    Article  Google Scholar 

  45. N.R. Chiou, A.J. Epstein, Adv. Mater. 17, 1679–1683 (2005)

    Article  Google Scholar 

  46. J.J. Xu, K. Wang, S.Z. Zu, B.H. Han, Z.X. Wei, ACS Nano 4, 5019–5026 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51407087 & 21375055) and the Ph.D. Scientific Research Foundation of Liaocheng University (No. 318051406).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuquan Tao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Tao, X., Li, Y. et al. Hydrothermal synthesis of graphene-MnO2-polyaniline composite and its electrochemical performance. J Mater Sci: Mater Electron 27, 6816–6822 (2016). https://doi.org/10.1007/s10854-016-4632-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4632-0

Keywords

Navigation