Skip to main content
Log in

Bright upconversion emission and enhanced piezoelectric properties in Er-modified bismuth layer-structured SrCaBi4Ti5O18 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bismuth layer-structured ferroelectric ceramics of SrCaBi4−x Er x Ti5O18 (SCBT-xEr, x = 0.00, 0.02, 0.04 and 0.06) were prepared by a conventional solid-state reaction method, and their ferroelectric, dielectric, piezoelectric and photoluminescence properties were investigated. The results indicated that all ceramics have a bismuth oxide layered with a dense structure. After Er3+ doping, samples show a bright up-conversion photoluminescence while simultaneously obtaining an enhanced ferroelectric and piezoelectric properties. A bright green (548 nm) and a weak red (681 nm) emission bands were obtained under excitation (980 nm) at room temperature, which correspond to the transitions from 4S3/2 to 4I15/2 and 4F9/2 to 4I15/2, respectively. Ferroelectric and piezoelectric measurements show that the Er3+-doped ceramics showed an increase in remnant polarization and piezoelectric constant. At x = 0.04, the piezoelectric constant d 33 reaches up to 13pC/N, together with a large remnant polarization (2P r = 16 μC/cm2) and high Curie temperature (T c = 573 °C). As a multifunctional material, Er3+-doped SCBT ferroelectric oxide showed great potential in optical electro integration and coupling device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Megriche, L. Lebrum, M. Troccaz, Sens. Actuators A 78, 88 (1999)

    Article  Google Scholar 

  2. B.H. Park, B.S. Kang, S.D. Bu, T.W. Noh, J. Lee, W. Jo, Nature (London) 401, 682 (1999)

    Article  Google Scholar 

  3. A. Ando, M. Kimura, Y. Sakabe, Jpn. J. Appl. Phys. Part 1 42, 150 (2003)

    Article  Google Scholar 

  4. L. Ma, K. Zhao, J. Li, Q. Wu, M. Zhao, C. Wang, J. Rare Earths 27, 496–500 (2009)

    Article  Google Scholar 

  5. Z. Yao, R. Chu, Z. Xu, J. Hao, D. Wei, G.J. Li, Mater. Sci. Mater. Electron. 26(11), 8740–8746 (2015)

    Article  Google Scholar 

  6. V.A. Isupov, Ferroelectrics 189, 211 (1996)

    Article  Google Scholar 

  7. D.Y. Suarez, I.M. Reaney, W.E. Lee, J. Mater. Res. 16, 3139 (2001)

    Article  Google Scholar 

  8. P. Ferrer, M. Algueró, J.E. Iglesias, A. Castro, J. Eur. Ceram. Soc. 27, 3641–3645 (2007)

    Article  Google Scholar 

  9. C. Moure, V. Gil, J. Tartaj, P. Duran, J. Eur. Ceram. Soc. 25, 2447–2451 (2005)

    Article  Google Scholar 

  10. Z. Xu, R. Chu, J. Hao, Y. Zhang, Q. Chen, L. Zhao, G. Li, Q. Yin, J. Alloys Compd. 487, 585–590 (2009)

    Article  Google Scholar 

  11. Z.G. Yi, Y.X. Li, Y. Wang, Q.R. Yin, Appl. Phys. Lett. 88, 152909 (2006)

    Article  Google Scholar 

  12. J. Zhu, X.B. Chen, W.P. Lu, X.Y. Mao, R. Hui, Appl. Phys. Lett. 83, 1818 (2003)

    Article  Google Scholar 

  13. J.S. Zhu, D. Su, X.M. Lu, H.X. Qin, Y.N. Wang, D.Y. Wang, H.L.W. Chan, K.H. Wong, C.L. Choy, J. Appl. Phys. 92, 5420 (2002)

    Article  Google Scholar 

  14. V. Lupei, A. Lupei, A. Ikesue, J. Appl. Phys. Lett. 86, 111–118 (2005)

    Article  Google Scholar 

  15. D. Mohr, A.S.S. de Camargo, J.F. Schneider, T.B. Queiroz, H. Eckert, E.R. Botero, D. Garcia, J.A. Eiras, Solid State Sci. 10, 1401–1407 (2008)

    Article  Google Scholar 

  16. B. Yan, X.Q. Su, Opt. Mater. 29, 547–551 (2007)

    Article  Google Scholar 

  17. V.S. Sastri, J.C. Biinzli, V.R. Rao, G.V.S. Rayudu, J.R. Perumareddi. Modern Aspects of Rare Earths and their Complexes. (Elsevier, Amsterdam, 2003)

    Google Scholar 

  18. D. Peng, H. Zou, C. Xu, X. Wang, X. Yao, J. Lin, T. Sun, AIP Adv. 2, 042187 (2012)

    Article  Google Scholar 

  19. R.D. Shannon, Acta Crystallogr. Sect. A Found. Crystallogr. 32(5), 751–767 (1976)

    Google Scholar 

  20. G.R. Li, L.Y. Zheng, Q.R. Yin, B. Jiang, W.W. Cao, J. Appl. Phys. 98, 064108 (2005)

    Article  Google Scholar 

  21. L. Zhang, S. Zhao, L. Zheng, G. Li, Q. Yin, Acta Phys. Sin. 54, 2346–2351 (2005)

    Google Scholar 

  22. X. Jiang, X. Fu, C. Chen et al., J Adv. Ceram. 4, 54–60 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 51402144, 51372110, 51502127 and 51302124), the Project of Shandong Province Higher Educational Science and Technology Program (Grant Nos. J14LA11 and J14LA10), the National High Technology Research and Development Program of China (No. 2013AA030801), Science and Technology Planning Project of Guangdong Province, China (No. 2013B091000001), Independent innovation and achievement transformation in Shandong Province special, China (No. 2014CGZH0904), the Natural Science Foundation of Shandong Province of China (Grant No. ZR2014JL030), and the Research Foundation of Liaocheng University (No. 318011306).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiqing Chu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Hao, J., Chu, R. et al. Bright upconversion emission and enhanced piezoelectric properties in Er-modified bismuth layer-structured SrCaBi4Ti5O18 ceramics. J Mater Sci: Mater Electron 27, 5259–5263 (2016). https://doi.org/10.1007/s10854-016-4422-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4422-8

Keywords

Navigation