Skip to main content

Advertisement

Log in

Energy-storage performance of PbO–B2O3–SiO2 added (Pb0.92Ba0.05La0.02)(Zr0.68Sn0.27Ti0.05)O3 antiferroelectric ceramics prepared by microwave sintering method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, (Pb0.92Ba0.05La0.02)(Zr0.68Sn0.27Ti0.05)O3 (PBLZST) antiferroelectric (AFE) ceramics with the addition of PbO–B2O3–SiO2 raw glass powder as sintering aid were prepared via the microwave sintering method. The effects of glass content on the electrical properties and energy-storage performance of the ceramics were investigated in detail. With the glass content increasing, dielectric constant of the ceramics gradually decreased, while the breakdown strength increased. A maximum recoverable energy-storage density was about 2.3 J/cm3 and the corresponding efficiency was about 76.8 % to be achieved in the ceramics with 3-wt% glass at room temperature. The energy density of the PBLZST AFE ceramic with 3-wt% glass is 1.3 times as that (1.8 J/cm3) of the pure specimens. These results indicated that the energy-storage performance of AFE ceramics could be improved by adding proper glass and selecting novel sintering method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X. Hao, J. Zhai, L.B. Kong, Z. Xu, A comprehensive review on the progress of lead zirconate-based antiferroelectric materials. Prog. Mater. Sci. 63, 1–57 (2014)

    Article  Google Scholar 

  2. X. Chen, F. Cao, Y. Gu, H. Zhang, G. Yu, G. Wang, X. Dong, Y. Gu, H. He, Y. Liu, Dynamic hysteresis and scaling behavior of energy density in Pb0.99Nb0.02[(Zr0.60Sn0.40)0.95Ti0.05]O3 antiferroelectric bulk ceramics. J. Am. Ceram. Soc. 4, 1–4 (2012)

    Google Scholar 

  3. S. Chen, X. Wang, T. Yang, J. Wang, Composition-dependent dielectric properties and energy storage performance of (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric ceramics. J. Mater. Sci. Mater. Electron. 32, 307–310 (2014)

    Google Scholar 

  4. J. Wang, T. Yang, S. Chen, X. Yao, Small hysteresis and high energy storage power of antiferroelectric ceramics. Funct. Mater. Lett. 1, 1350064 (2014)

    Article  Google Scholar 

  5. J. Yi, L. Zhang, B. Xie, S. Jiang, The influence of temperature induced phase transition on the energy storage density of anti-ferroelectric ceramics. Ceram. Int. 118, 124107 (2015)

    Google Scholar 

  6. M.S. Mirshekarloo, K. Yao, T. Sritharan, Large strain and high energy storage density in orthorhombic perovskite (Pb0.97La0.02)(Zr1−x−ySnxTiy)O3 antiferroelectric thin films. Appl. Phys. Lett. 97, 142902 (2010)

    Article  Google Scholar 

  7. S.E. Young, J.Y. Zhang, W. Hong, X. Tan, Mechanical self-confinement to enhance energy storage density of antiferroelectric capacitors. Appl. Phys. Lett. 113, 054101 (2013)

    Google Scholar 

  8. F. Gao, X. Dong, C. Mao, F. Cao, G. Wang, Phase diagram of (1 −x%)(0.89Bi0.5Na0.5TiO3–0.06BaTiO3–0.05K0.5Na0.5NbO3)–x%MnO2 lead-free anti-ferroelectric ceramics. Solid State Commun. 152, 1670–1672 (2012)

    Article  Google Scholar 

  9. S. Jiang, D. Zhou, S. Gong, W. Lu, Study of piezoelectric ceramic materials for high-temperature and high-frequency applications. Sens. Actuators A 69, 1–4 (1998)

    Article  Google Scholar 

  10. L. Zhang, X. Hao, L. Zhang, J. Yang, S. An, Microstructure and energy-storage performance of BaO–B2O3–SiO2 glass added (Na0.5Bi0.5)TiO3 thick films. J. Mater. Sci. Mater. Electron. 24, 3830–3835 (2013)

    Article  Google Scholar 

  11. M.S. Mirshekarloo, K. Yao, T. Sritharan, Large strain and high energy storage density in orthorhombic perovskite (Pb0.97La0.02)(Zr1−x−ySnxTiy)O3 antiferroelectric thin films. Appl. Phys. Lett. 97, 142902 (2010)

    Article  Google Scholar 

  12. Z. Liu, X. Chen, W. Peng, C. Xu, X. Dong, F. Cao, G. Wang, Temperature-dependent stability of energy storage properties of Pb0.97La0.02(Zr0.58Sn0.335Ti0.085)O3 antiferroelectric ceramics for pulse power capacitors. Appl. Phys. Lett. 106, 262901 (2015)

    Article  Google Scholar 

  13. S. Chen, T. Yang, J. Wang, X. Yao, Effects of glass additions on energy storage performance of (Pb0.97La0.02)(Zr0.92Sn0.05Ti0.03)O3 antiferroelectric ceramics. J. Mater. Sci. Mater. Electron. 12, 4764–4768 (2013)

    Article  Google Scholar 

  14. Q. Zhang, X. Liu, Y. Zhang, X. Song, J. Zhu, I. Baturin, J. Chen, Effect of barium content on dielectric and energy storage properties of (Pb, La, Ba)(Zr, Sn, Ti)O3 ceramics. Ceram. Int. 41, 3030–3035 (2015)

    Article  Google Scholar 

  15. Q. Zhang, L. Wang, J. Luo, Q. Tang, J. Du, Improved energy storage density in barium strontium titanate by addition of BaO–SiO2–B2O3 glass. J. Am. Ceram. Soc. 92, 1871–1873 (2009)

    Article  Google Scholar 

  16. L. Zhang, S. Jiang, B. Fan, G. Zhang, High energy storage performance in (Pb0.858Ba0.1La0.02Y0.008)(Zr0.65Sn0.3Ti0.05)O3–(Pb0.97La0.02)(Zr0.9Sn0.05Ti0.05)O3 anti-ferroelectric composite ceramics. Ceram. Int. 41, 1139–1144 (2015)

    Article  Google Scholar 

  17. G. Zhang, D. Zhu, X. Zhang, L. Zhang, J. Yi, B. Xie, Y. Zeng, Q. Li, Q. Wang, S. Jiang, High-energy storage performance of (Pb0.87Ba0.1La0.02)(Zr0.68Sn0.24Ti0.08)O3 antiferroelectric ceramics fabricated by the hot-press sintering method. J. Am. Ceram. Soc. 4, 1–7 (2014)

    Google Scholar 

  18. Y. Wang, X. Hao, J. Xu, Effects of PbO insert layer on the microstructure and energy storage performance of (042)-preferred PLZT antiferroelectric thick films. J. Mater. Res. 27, 1770–1775 (2012)

    Article  Google Scholar 

  19. N. Zhang, Y.J. Feng, Z. Xu, Effects of barium modification on dielectric and ferroelectric properties of PLZST ceramics. Mater. Res. 15, 240–243 (2011)

    Google Scholar 

  20. W. Jinfei, Y. Tongqing, C. Shengchen, L. Gang, Xi Yao, Characteristics and dielectric properties of (Pb0.97–xLa0.02Bax)(Zr0.72Sn0.22Ti0.06)O3 ceramics. J. Alloys Compd. 539, 280–283 (2012)

    Article  Google Scholar 

  21. S. Rhee, D. Agrawal, T. Shrout, M. Thumm, Investigation of high microwave frequency (2.45 GHz, 30 GHz) sintering for Pb-based ferroelectrics and microscale functional devices. Ferroelectrics 261, 15–20 (2001)

    Article  Google Scholar 

  22. P.-H. Chena, H.-C. Pan, C.-C. Chou, I.-N. Lin, Microstructures and properties of semiconductive (Pb0 .6Sr0.4)TiO3 ceramics using PbTiO3-coated SrTiO3 powders. J. Eur. Ceram. Soc. 21, 1905–1908 (2001)

    Article  Google Scholar 

  23. P.K. Sharma, Z. Ounaies, V.V. Varadan, V.K. Varadan, Dielectric and piezoelectric properties of microwave sintered PZT. Smart Mater. Struct. 10, 878–883 (2001)

    Article  Google Scholar 

  24. M. Oghbaei, O. Mirzaee, Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J. Alloys Compd. 494, 175–189 (2010)

    Article  Google Scholar 

  25. Q. Zhang, T. Yang, Y. Zhang, J. Wang, X. Yao, Enhanced antiferroelectric stability and electric-field-induced strain properties in rare earth-modified Pb(Zr0.63Sn0.26Ti0.11)O3 ceramics. Appl. Phys. Lett. 102, 222904 (2013)

    Article  Google Scholar 

  26. E. Breval, C. Wang, J.P. Dougherty, K.W. Gachigi, PLZT phases near lead zirconate: 1. determination by X-ray diffraction. J. Am. Ceram. Soc. 88, 437–442 (2005)

    Article  Google Scholar 

  27. B. Wu, D. Xiao, J. Wu, Q. Gou, J. Zhu, Microstructure and electrical properties of (Ba0.98Ca0.02)(Ti0.94Sn0.06)O3–x wt% ZnO lead-free piezoelectric ceramics sintered at lower temperature. J. Mater. Sci. Mater. Electron. 26, 2323–2328 (2015)

    Article  Google Scholar 

  28. R.J. Ong, D.A. Payne, N.R. Sottos, Processing effects for integrated PZT: residual stress, thickness, and dielectric properties. J. Am. Ceram. Soc. 88, 2839–2847 (2005)

    Article  Google Scholar 

  29. Q. Zhang, S. Chen, M. Fan, S. Jiang, T. Yang, J. Wang, G. Li, X. Yao, Large electric-induced pyroelectric properties in Mn-doped (Pb0.87La0.02Ba0.1)(Zr0.75Sn0.16Ti0.09)O3 ceramics. J. Alloys Compd. 547, 29–32 (2013)

    Article  Google Scholar 

  30. Q. Zhang, Y. Zhang, T. Yang, S. Jiang, J. Wang, Shengchen Chen, Gang Lia, Xi Yao, Effect of compositional variations on phase transition and electric field-induced strain of (Pb, Ba) (Nb, Zr, Sn, Ti)O3 ceramics. Ceram. Int. 39, 5403–5406 (2013)

    Article  Google Scholar 

  31. T. Tunkasiri, G. Rujijanagul, Dielectric strength of fine grained barium titanate ceramics. J. Mater. Sci. Lett. 15, 1767–1769 (1996)

    Article  Google Scholar 

  32. Y. Zhao, X. Hao, Q. Zhang, Energy-storage properties and electrocaloric effect of Pb(1-3x/2)LaxZr0.85Ti0.15O3 antiferroelectric thick films. ACS Appl. Mater. Interfaces 6, 11633–11639 (2014)

    Article  Google Scholar 

  33. X. Hao, P. Wang, X. Zhang, J. Xu, Microstructure and energy-storage performance of PbO–B2O3–SiO2–ZnO glass added (Pb0.97La0.02)(Zr0.97Ti0.03)O3 antiferroelectric thick films. Mater. Res. Bull. 48, 84–88 (2013)

    Article  Google Scholar 

  34. J. Luo, J. Du, Q. Tang, C. Mao, Lead sodium niobate glass-ceramic dielectrics and internal electrode structure for high energy storage density capacitors. IEEE Trans. Electron Devices 55, 3549 (2008)

    Article  Google Scholar 

  35. G. Li, T. Yang, J. Wang, Z. Sun, J. Guo, Effect of glass additive on electrical properties of PLZST antiferroelectric ceramics. Key Eng. Mater. 512–515, 1300–1303 (2012)

    Article  Google Scholar 

  36. H.-P. Jeon, S.-K. Lee, S.-W. Kim, D.-K. Cho, Effects of BaO–B2O3–SiO2 glass additive on densification and dielectric properties of BaTiO3 ceramics. Mater. Chem. Phys. 94, 185–189 (2005)

    Article  Google Scholar 

  37. S. Patel, A. Chauhan, R. Vaish, Improved electrical energy storage density in vanadium doped BaTiO3 bulk ceramics by addition of 3BaO–3TiO2–B2O3 glass. Energy Technol. 3, 70–76 (2015)

    Article  Google Scholar 

  38. L. Jin, F. Li, S. Zhang, Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J. Am. Ceram. Soc. 97, 1–27 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from the Program for New Century Excellent Talents in University, the Natural Science Foundation of Inner Mongolia (2015JQ04), the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region, the Grassland Talent Plan of Inner Mongolia Autonomous Region, and the Innovation Fund of Inner Monglia University of Science and Technology No. 2014QNGG01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xihong Hao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Hao, X., Zhang, Q. et al. Energy-storage performance of PbO–B2O3–SiO2 added (Pb0.92Ba0.05La0.02)(Zr0.68Sn0.27Ti0.05)O3 antiferroelectric ceramics prepared by microwave sintering method. J Mater Sci: Mater Electron 27, 4534–4540 (2016). https://doi.org/10.1007/s10854-016-4328-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4328-5

Keywords

Navigation